Abstract

Negative-index metamaterials (NIMs) at near infrared wavelengths (~2 μm) are fabricated with circular, elliptical and rectangular holes penetrating through metal/dielectric/metal films. All three NIM structures exhibit similar figures of merit; however, the transmission is higher for the NIM with rectangular holes as a result of an improved impedance match with the substrate-superstrate (air-glass) combination.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
    [CrossRef]
  3. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,  10509 (1968).
    [CrossRef]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  5. S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002).
    [CrossRef]
  6. N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611(2003).
    [CrossRef]
  7. N.-C. Panoiu and R. M. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Opt. Commun. 233, 331-337 (2003).
    [CrossRef]
  8. S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
    [CrossRef] [PubMed]
  9. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  10. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, Th Koschny, M. Kafesaki, E. N. Economou and C. M. Soukoulis "Magnetic response of split-ring resonators in the far infrared frequency regime,"Opt. Lett. 30, 1348-1350 (2005).
    [CrossRef] [PubMed]
  11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  12. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
    [CrossRef]
  13. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  14. V. M. Shalaev, W. Cai, U. K. Chettiar, H-K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  15. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
    [CrossRef] [PubMed]
  16. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Paniou and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
    [CrossRef]
  17. G. Dolling, C. Enkrich, W. Wegener, C.M. Soukoulis and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31. 1800-1802 (2006)
    [CrossRef] [PubMed]
  18. S. R. J. Brueck, "Optical and Interferometric Lithography - Nanotechnology Enablers," Proc. IEEE 93, 1704-1721 (2005).
    [CrossRef]
  19. M. G. Moharam and T.K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  20. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
    [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R.W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared," Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  22. D. R. Smith and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104. (2002).
    [CrossRef]

2006 (2)

2005 (7)

S. R. J. Brueck, "Optical and Interferometric Lithography - Nanotechnology Enablers," Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H-K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, Th Koschny, M. Kafesaki, E. N. Economou and C. M. Soukoulis "Magnetic response of split-ring resonators in the far infrared frequency regime,"Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

2003 (2)

N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611(2003).
[CrossRef]

N.-C. Panoiu and R. M. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Opt. Commun. 233, 331-337 (2003).
[CrossRef]

2002 (4)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
[CrossRef]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
[CrossRef]

S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002).
[CrossRef]

D. R. Smith and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104. (2002).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,  10509 (1968).
[CrossRef]

Agi, K.

Alexander, R.W.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Brueck, S. R. J.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Paniou and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

S. R. J. Brueck, "Optical and Interferometric Lithography - Nanotechnology Enablers," Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
[CrossRef]

Cai, W.

Chettiar, U. K.

Dolling, G.

Drachev, V. P.

Enkrich, C.

G. Dolling, C. Enkrich, W. Wegener, C.M. Soukoulis and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31. 1800-1802 (2006)
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Fan, W.

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Frauenglass, A.

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Gaylord, T.K.

Gerthsen, D.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

Gundogdu, T. F.

Katsarakis, N.

Kildishev, A. V.

Konstantinidis, G.

Koschny, T.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Kostopoulos, A.

Linden, S.

G. Dolling, C. Enkrich, W. Wegener, C.M. Soukoulis and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31. 1800-1802 (2006)
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Long, L. L.

Malloy, K. J.

Minhas, B.

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Minhas, B. K.

Moharam, M. G.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

O'Brien, S.

S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002).
[CrossRef]

Ordal, M. A.

Osgood, R. M.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Paniou and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611(2003).
[CrossRef]

N.-C. Panoiu and R. M. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Opt. Commun. 233, 331-337 (2003).
[CrossRef]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Paniou, N.-C.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N.-C.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

N.-C. Panoiu and R. M. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Opt. Commun. 233, 331-337 (2003).
[CrossRef]

N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611(2003).
[CrossRef]

Penciu, R. S.

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pérez-Willard, F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104. (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
[CrossRef]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
[CrossRef]

D. R. Smith and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104. (2002).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Soukoulis, C.M.

Th Koschny, T. F.

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,  10509 (1968).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Ward, C. A.

Wegener, M.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Wegener, W.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Yuan, H-K.

Zhang, S.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Paniou and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

Adv. Mat. (1)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener and S. Linden "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mat. 17, 2547-2549 (2005).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter 14, 6383-6394 (2002).
[CrossRef]

Opt. Commun. (1)

N.-C. Panoiu and R. M. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Opt. Commun. 233, 331-337 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

D. R. Smith and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104. (2002).
[CrossRef]

Phys. Rev. E (1)

N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611(2003).
[CrossRef]

Phys. Rev. Lett. (4)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Demonstration of Mid-Infrared Resonant Magnetic Nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

S. R. J. Brueck, "Optical and Interferometric Lithography - Nanotechnology Enablers," Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

Science (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2002).
[CrossRef]

Sov. Phys. USPEKHI (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,  10509 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic views of metamaterial structures with circular, elliptical and rectangular holes. (a) Side view of metal-dielectric-metal film stack. Top view of NIMs with (b) circular (c) elliptical (d) rectangular holes. In (c) and (d), the polarization can be directed along either the major (long) or the minor (short) axis, which are denoted Epar (electric field parallel to the minor/short axis) and Eper (electric field perpendicular to the minor/short axis) polarization, respectively.

Fig. 2.
Fig. 2.

Scanning electron microscopy (SEM) pictures of Au-Al2O3-Au samples with (a) circular and (b) elliptical holes.

Fig. 3.
Fig. 3.

SEM pictures of samples: (a) 1D PR pattern on ARC layer (b) 1D PR pattern perpendicular to 1D ARC pattern (c) ARC post (top view)

Fig. 4.
Fig. 4.

SEM pictures of completed fishnet structure samples.

Fig. 5.
Fig. 5.

Measured normal incidence transmission spectra for Epar and Eper polarization using FTIR. NIMs with (a) circular (b) elliptical (c) rectangular holes. Insets show a comparison of Epar transmission spectra calculated by RCWA model and measurement across the negative refractive index region with one (1×ωc ) and two times (2×ωc ) the bulk scattering frequency in a Drüde model for the metal permittivity.

Figs. 6.
Figs. 6.

(a). and 6(b). Real (solid lines) and imaginary (dashed lines) parts of the effective refractive index using the scattering frequencies one (1×ωc ) and two times (2×ωc ) that of bulk gold, respectively. 6(c), 6(d) FOMs using 1×ωc and 2×ωc . The same color convention as Fig. 5 is followed (black: NIM with circular holes, blue: NIM with elliptical holes and red: NIM with rectangular holes)

Fig. 7.
Fig. 7.

(a). 7(b). The calculated effective impedance (ξeff ). 7(c), 7(d) effective permittivity (εeff ). Real parts of ξeff and εeff are indicated by solid lines and imaginary parts are plotted with symbols. The same color convention as Fig. 5 is followed. Arrows represent the negative refractive index region of NIM with circles, ellipses and rectangles, respectively.

Fig. 8.
Fig. 8.

(a). – 8(d) The effective permeability (μeff ). The color convention is the same as in Fig. 5.

Metrics