Abstract

We present novel designs and demonstrate a fabrication platform for electrically driven lasers based on high quality-factor photonic crystal cavities realized in mid-infrared quantum cascade laser material. The structures are based on deep-etched ridges with their sides perforated with photonic crystal lattice, using focused ion beam milling. In this way, a photonic gap is opened for the emitted TM polarized light. Detailed modeling and optimization of the optical properties of the lasers are presented, and their application in optofluidics is investigated. Porous photonic crystal quantum cascade lasers have potential for on-chip, intracavity chemical and biological sensing in fluids using mid infrared spectroscopy. These lasers can also be frequency tuned over a large spectral range by introducing transparent liquid in the photonic crystal holes.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam

Darren Freeman, Steve Madden, and Barry Luther-Davies
Opt. Express 13(8) 3079-3086 (2005)

Demonstration of air-guided quantum cascade lasers without top claddings

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. WIlson, and A. B. Krysa
Opt. Express 15(22) 14861-14869 (2007)

Terahertz photonic crystal quantum cascade lasers

Hua Zhang, L. Andrea Dunbar, Giacomo Scalari, Romuald Houdré, and Jérôme Faist
Opt. Express 15(25) 16818-16827 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
    [Crossref]
  3. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
    [Crossref]
  4. S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
    [Crossref]
  5. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
    [Crossref]
  6. T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
    [Crossref]
  7. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
    [Crossref]
  8. J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
    [Crossref]
  9. J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
    [Crossref]
  10. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670 (2002)
    [PubMed]
  11. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
    [Crossref]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
    [Crossref] [PubMed]
  13. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961 (2005)
    [Crossref] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
    [Crossref]
  15. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996 (2006)
    [Crossref] [PubMed]
  16. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
    [Crossref] [PubMed]
  17. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
    [Crossref]
  18. M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
    [Crossref]
  19. T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
    [Crossref]
  20. H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
    [Crossref]
  21. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
    [Crossref] [PubMed]
  22. A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
    [Crossref]
  23. Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
    [Crossref] [PubMed]
  24. L Diehl, B. G. Lee, P. Behroozi, M. Loncčar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660 (2006).
    [Crossref] [PubMed]
  25. M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
    [Crossref]
  26. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
    [Crossref] [PubMed]
  27. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
    [Crossref] [PubMed]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
    [Crossref]
  29. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
    [Crossref] [PubMed]
  30. K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
    [Crossref]
  31. C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
    [Crossref]
  32. L A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors,” Opt. Express 13, 8960 (2005)
    [Crossref] [PubMed]
  33. S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
    [Crossref]
  34. J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
    [Crossref]
  35. Ph. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003)
    [Crossref]
  36. J. Melngailis, “Focused ion-beam technology and applications,” J. Vac. Sci. Tech. B 5, 469 (1987).
    [Crossref]
  37. M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
    [Crossref]
  38. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
    [Crossref]
  39. J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
    [Crossref]
  40. M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.
  41. L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
    [Crossref]
  42. K. E. Zinoviev, C. Dominguez, and A. Vila, “Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam,” Opt. Express 13, 8618 (2005).
    [Crossref] [PubMed]
  43. Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581 (2005).
    [Crossref]
  44. M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
    [Crossref]
  45. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093 (2004)
    [Crossref] [PubMed]
  46. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
    [Crossref]
  47. H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
    [Crossref]
  48. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59 (2006)
    [Crossref] [PubMed]
  49. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
    [Crossref]
  50. J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
    [Crossref]
  51. J. E. Bertie and K. H. Michaelian, “Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?,” J. Chem. Phys. 109, 6764 (1998)
    [Crossref]

2006 (10)

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
[Crossref]

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59 (2006)
[Crossref] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996 (2006)
[Crossref] [PubMed]

L Diehl, B. G. Lee, P. Behroozi, M. Loncčar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660 (2006).
[Crossref] [PubMed]

2005 (9)

D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961 (2005)
[Crossref] [PubMed]

K. E. Zinoviev, C. Dominguez, and A. Vila, “Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam,” Opt. Express 13, 8618 (2005).
[Crossref] [PubMed]

L A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors,” Opt. Express 13, 8960 (2005)
[Crossref] [PubMed]

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581 (2005).
[Crossref]

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

2004 (6)

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093 (2004)
[Crossref] [PubMed]

2003 (6)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Ph. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003)
[Crossref]

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

2002 (6)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670 (2002)
[PubMed]

2001 (3)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

2000 (2)

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

1999 (2)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

1998 (2)

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. E. Bertie and K. H. Michaelian, “Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?,” J. Chem. Phys. 109, 6764 (1998)
[Crossref]

1996 (1)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

1991 (1)

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

1987 (1)

J. Melngailis, “Focused ion-beam technology and applications,” J. Vac. Sci. Tech. B 5, 469 (1987).
[Crossref]

Adams, M. L.

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

Allen, T.

Altug, H.

H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
[Crossref]

Anand, S.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Asano, T.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996 (2006)
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

Baillargeon, J. N.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

Beck, M.

Behroozi, P.

Belkin, M. A.

Berrier, A.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Bertagnolli, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Bertie, J. E.

J. E. Bertie and K. H. Michaelian, “Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?,” J. Chem. Phys. 109, 6764 (1998)
[Crossref]

Bhattacharya, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

Blaser, S.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Bonetti, Y.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Bour, D.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Bryan, N. K. A.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581 (2005).
[Crossref]

Capasso, F.

L Diehl, B. G. Lee, P. Behroozi, M. Loncčar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660 (2006).
[Crossref] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Chelnokov, A.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

Chen, H.

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

Chen, J. X.

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

Chen, J. Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

Cho, A. Y.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Chow, E.

Chu, S. G.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

Colombelli, R

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

Colombelli, R.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Corzine, S.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

Cryan, M. J.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Deppe, D.

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Diehl, L

Diehl, L.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Dominguez, C.

Dunbar, L A.

Eli, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Emery, T.

Englund, D.

H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
[Crossref]

D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961 (2005)
[Crossref] [PubMed]

Erickson, D.

Faist, J.

L Diehl, B. G. Lee, P. Behroozi, M. Loncčar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660 (2006).
[Crossref] [PubMed]

L A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors,” Opt. Express 13, 8960 (2005)
[Crossref] [PubMed]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Fan, S.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

Fan, S. H.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Farmer, C D.

C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
[Crossref]

Ferrini, R.

Finger, N.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Florez, L. T.

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

Forchel, A.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Fu, Y.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581 (2005).
[Crossref]

Fushman, I.

Garoche, P.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

Gentner, J. L

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Gianordoli, S.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Giovannini, M.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

L A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors,” Opt. Express 13, 8960 (2005)
[Crossref] [PubMed]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Girolami, G.

Gmachl, C.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

Gmachl, C. F.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Gogna, P.

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

Gornig, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Gosele, U.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Grot, A.

Harbison, J. P.

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

Heard, P. J.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Heinrich, J.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Hill, M.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Hillebrand, R.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Höfler, G.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

Hofling, S.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Hofmann, H.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Hofstetter, D.

Houdre, R.

Hoyler, N.

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Hugonin, J. P.

Ph. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003)
[Crossref]

Hutchinson, A. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Hvozdara, L.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Hwang, J. K.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

Ironside, C. N.

C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
[Crossref]

Ivanov, P. S.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Jewell, J. L

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Johnson, S. G.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

Kamp, M.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Kim, J. S.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

Kolodziejski, L A.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

Kurt, H.

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

Lalanne, Ph.

Ph. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003)
[Crossref]

Lee, B. G.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

LeGratiet, L.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Liu, Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

Loncar, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Lonccar, M.

L Diehl, B. G. Lee, P. Behroozi, M. Loncčar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660 (2006).
[Crossref] [PubMed]

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
[Crossref]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

Lourtioz, J. M.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

Lugstein, A.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Mabuchi, H.

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

Mekis, A.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

Melngailis, J.

J. Melngailis, “Focused ion-beam technology and applications,” J. Vac. Sci. Tech. B 5, 469 (1987).
[Crossref]

Michaelian, K. H.

J. E. Bertie and K. H. Michaelian, “Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?,” J. Chem. Phys. 109, 6764 (1998)
[Crossref]

Mirkarimi, L. W.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

Moreau, V.

Muller, A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Mulot, M.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Noda, S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996 (2006)
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Olivier, S.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Painter, O.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670 (2002)
[PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Psaltis, D.

Psaltis, Demetri

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
[Crossref] [PubMed]

Qiu, Y.

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
[Crossref]

Qiu, Y. M.

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

Quake, Stephen R.

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
[Crossref] [PubMed]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Reithmaier, J. P.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Rockwood, T.

Rorison, J. M.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Rowson, S.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

Rumala, Y. S.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Ryu, H. Y.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

Sabarinathan, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

Sanz, D. Cortaberria

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Scalari, G.

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59 (2006)
[Crossref] [PubMed]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
[Crossref]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

Schilling, J.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Schrenk, W.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Sergent, A. M.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Seufert, J.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Shinaya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

Sigalas, M.

Sirigu, L.

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Sivco, D. L

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Sivco, D. L.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

Song, B. S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996 (2006)
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

Srinivasan, K.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670 (2002)
[PubMed]

Stanley, C. R.

C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
[Crossref]

Strasser, G.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Stupian, G.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Talneau, A.

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

Tennant, D. M.

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Tian, L

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Topolancik, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

Troccoli, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Unterrainer, K.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Vila, A.

Villeneuve, P. R.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Vucckovic, J.

H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

Vucckovicc, J.

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

Vuckovic, J.

Walker, C. L

C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
[Crossref]

Wang, K.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

White, J.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

Yang, Changhuei

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
[Crossref] [PubMed]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

Yarekha, D. A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

Yu, P. C.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

Yu, S.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

Zinoviev, K. E.

Appl. Phys. B (1)

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80, 581 (2005).
[Crossref]

Appl. Phys. Lett. (19)

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143 (2003).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High power mid-infrared (λ∼5μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680 (1996).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ∼5.4μm,” Appl. Phys. Lett. 86, 041109 (2005).
[Crossref]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K,” Appl. Phys. Lett. 88, 201115 (2006).
[Crossref]

T. Yoshie, J. Vucčković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001)
[Crossref]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001)
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003)
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006)
[Crossref]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002)
[Crossref]

M. Loncčar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002)
[Crossref]

T. Yoshie, M. Loncčar, A. Scherer, and Y. Qiu, “High frequency oscillation in photonic crystal nanlasers,” Appl. Phys. Lett. 84, 3543 (2004).
[Crossref]

A. Talneau, L. LeGratiet, J. L Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett. 85, 1913 (2004)
[Crossref]

M. Loncčar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003)
[Crossref]

K. Srinivasan, O. Painter, R Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164 (2004).
[Crossref]

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel, and J. Seufert, “Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,”, Appl. Phys. Lett. 89, 191113 (2006).
[Crossref]

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett. 77, 2943 (2000).
[Crossref]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and U. Gosele, “Three-dimensional macroporous silicon photonic crystal with large photonic bandgap,” Appl. Phys. Lett. 86, 011101 (2005).
[Crossref]

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors,“ Appl. Phys. Lett. 77, 1241 (2000).
[Crossref]

Electron. Lett. (1)

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, “Direct liquid cooling of room-temperature operated quantum cascade lasers,“ Electron. Lett. 42, 534 (2006).
[Crossref]

IEE Proc. Optoelectronics (1)

C. L Walker, C D. Farmer, C. R. Stanley, and C. N. Ironside, “Progress towards photonic crystal quantum cascade laser,” IEE Proc. Optoelectronics 151, 502 (204).
[Crossref]

IEEE J. Quantum Electron. (3)

Ph. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003)
[Crossref]

J. Vucčković, M. Loncčar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38, 850 (2002)
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34, 9 (1998).
[Crossref]

IEEE J. Quantum Electtron. (1)

J. L Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electtron. 27, 1332 (1991).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

M. L. Adams, M. Loncčar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[Crossref]

IEEE, J. Sel. Top. Quantum Electron. (1)

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L Tian, S. Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[Crossref]

J. Chem. Phys. (1)

J. E. Bertie and K. H. Michaelian, “Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?,” J. Chem. Phys. 109, 6764 (1998)
[Crossref]

J. Vac. Sci. Tech. B (1)

J. Melngailis, “Focused ion-beam technology and applications,” J. Vac. Sci. Tech. B 5, 469 (1987).
[Crossref]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vucčković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006)
[Crossref]

Nature (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003)
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004)
[Crossref] [PubMed]

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006)
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today  55, 34 (2002)

Phys. Rev. B (1)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[Crossref]

Phys. Rev. E (1)

J. Vucčkovićc, M. Loncčar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002)
[Crossref]

Phys. Rev. Lett. (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006)
[Crossref] [PubMed]

Reports on Progress in Physics. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Reports on Progress in Physics. 64, 1533 (2001)
[Crossref]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004)
[Crossref] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374 (2003).
[Crossref] [PubMed]

Other (1)

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, and J. Faist, “Novel photonic crystal quantum cascade laser platform,” CLEO 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic of a thin-slab PhC structure. Guided modes of the structure can be even (TE-like) or odd (TM-like) with respect to the symmetry plane in the middle of the slab (z=0). Even modes have E-field perpendicular to the holes at z=0 and odd modes have E-field parallel to the holes at z=0. (b) Band diagram for guided modes of InP slab (nInP=3.09 @ λ=5.8μm) perforated with holes of radius r=0.28a. Slab thickness is t=0.75a, a is periodicity of the lattice. Bandgap is open for even modes (red), and it is closed for odd modes (blue).

Fig. 2.
Fig. 2.

(a) Schematic of conventional planar PhC laser, with holes etched perpendicular to the top surface. (b) Novel design, based on a thin vertical slab perforated with holes parallel to the top surface. The active region is shown in red, metal contacts in yellow, and the insulating silicon nitride in blue.

Fig. 3.
Fig. 3.

(a) Schematic of the proposed laser design and scanning electron microscopy (SEM) micrograph of the fabricated structure. All electrons that are injected in the structure travel through the active region and participate in light generation. Quantum wells can be seen as a light gray stripe in the SEM image. (b) Simulation result of the high-Q “heterostructure” cavity. Active region is not perforated with PhC lattice, resulting in reduced surface recombination.

Fig. 4.
Fig. 4.

Ez component of the fundamental mode of a (a) 8μm wide ridge made in a conventional QCL material [25], and (b) 1.2μm wide waveguide made in modified QCL material. Two layers above and below active region in (a) are the inner cladding InGaAs layers used to improve Γ. The axes are labeled in μm.

Fig. 5.
Fig. 5.

Two possible implementations of PhC structure below and above active region. (a) ΓJ and (b) ΓX waveguides. (a) ΓJ waveguide couples strongly Ez and Ey components of the field, thus reducing confinement factor. (b) ΓX waveguide preserves the polarization of the Ez field emitted by QCL structure. Modes are shown for k vector at the edge of Brillouin zone: (a) a/λ.=0.289 (b), a/λ.=0.34 (λ. is wavelength in air).

Fig. 6.
Fig. 6.

(a) Resonant mode in the cavity based on the design in Reference 12. The cavity resonance and Q are tuned by shifting holes, as indicated by arrows, and by controlling the width of the cavity, d, by moving the photonic crystal mirrors above and below the cavity towards the center of the cavity. A white box outlines the region used to calculate the partial Qs. (b) Cavity based on ΓX waveguide. The same mechanism as in (a) is used to tune the cavity Q and the resonant frequency.

Fig. 7.
Fig. 7.

(a) Fabry-Perot cavity with photonic crystal mirrors. (b) and (c) The reflectivity and transmission of a photonic crystal mirror consisting of 8 layers of holes made in a 4μm -thick slab. Holes are assumed to have have (b) vertical side walls or (c) slanted side walls (4°).

Fig. 8.
Fig. 8.

Fabrication sequence. See text for detailed description.

Fig. 9.
Fig. 9.

Fabricated PhC cavities. (a) The structure consisting of a bonding pad and a thin ridge with four different cavities. (b) Blow-up of a ΓJ cavity. The quantum well active region can be seen as a light-gray stripe, indicated by an arrow. (c) SEM image of another structure. (d) Fabry-Perot cavity formed between the two photonic crystal mirrors.

Fig. 10.
Fig. 10.

Photonic crystal cavity fabricated using FIB only (no dry etching).

Fig. 11.
Fig. 11.

(a) Schematic of PhC QCL integrated with microfluidic channel. (b) Emission wavelength of the laser vs. refractive index of the fluid surrounding the laser. (c) 1/Q=1/Qintrinsic+1/Qfluid of laser immersed in fluid as a function of imaginary part of the refractive index of the fluid. Black line ‒ PhC QCL, red line 1.4μm wide conventional QCL, and blue line 8μm wide conventional QCL. Both linear and semi-log scales are shown.

Tables (1)

Tables Icon

Table 1. The structure of the QCL material. The active region consists of 10 stages. One stage consists of the following InGaAs/InAlAs layer sequence: 2.7/ 2.2/ 2.5/ 2.0/ 2.2/ 2.0/ 2.1/ 2.3/ 2.2/ 2.7/ 2.1/ 3.0/ 2.0/ 4.3/ 1.3/ 1.9/ 5.2/ 1.8/ 4.5/ 2.8/ 2.8/ 2.1. The layer thicknesses are given in nanometers. InAlAs barriers are shown in bold. The underlined numbers correspond to the doped layers with doping level 41017cm−3 resulting in the averaged doping of the active of 1017cm−3. n is the real and k is the imaginary part of the refractive index.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ = active W z dxdz total W tot dxdz , W z = ε E z 2 , W tot = ε ( E x 2 + E y 2 + E z 2 )
J th = α g Γ
1 Q = 1 Q scattering + 1 Q material = 1 Q x + 1 Q y + 1 Q z + 1 Q material
Q material = 2 π n eff λ α waveguide = n eff 2 k eff ,
η i = 1 Q i 1 Q
Q = 2 π n eff λ α mirror = 2 π n eff L λ ln ( R front R back )
1 Q ( k ) = 1 Q int rinsic + 1 Q fluid = 1 Q int rinsic + k s

Metrics