Abstract

The continued scaling of integrated circuits will require advances in intra-chip interconnect technology to minimize delay, density of energy dissipation and cross-talk. We present the first quantitative comparison between the performance of metal wire interconnects, operated in the traditional manner by electric charge and discharge, versus the performance of metal wires operated as surface plasmon waveguides. Surface plasmon wire waveguides have the potential to reduce signal delay, but the high confinement required for low cross-talk amongst high density plasmon wire interconnects significantly increases energy dissipation per transmitted bit, above and beyond that required for electric charge/discharge interconnects at the same density.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. "International Technology Roadmap for Semiconductors, 2005 Edition, Interconnect," http://www.itrs.net/Links/2005ITRS/Interconnect2005/Interconnect2005.pdf.
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189 (2006).
    [CrossRef] [PubMed]
  3. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
    [CrossRef]
  4. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
    [CrossRef]
  5. G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 114 (1965).
  6. D.A.B. Miller, "Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters," Opt. Lett. 14, 146, (1989).
    [CrossRef] [PubMed]
  7. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express,  14,314 (2006).
    [CrossRef] [PubMed]
  8. S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).
  9. L.G. Schulz, "The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k," J. Opt. Soc. Am. 44, 357 (1954).
    [CrossRef]
  10. L.G. Schulz and F. R. Tangherlini, "Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n," J. Opt. Soc. Am. 44,362 (1954).
    [CrossRef]
  11. V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).
  12. R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).
  13. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  14. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29,1069-1071 (2004).
    [CrossRef] [PubMed]
  15. A. Hosseini, A. Nieuwoudt, and Y. Massoud, "Efficient Simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi," Opt. Express,  14, 7291 (2006).
    [CrossRef] [PubMed]
  16. T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, and K. Hane, Nano-Optics (Springer, 2002), Chap. 5.
  17. J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
    [CrossRef]
  18. "International Technology Roadmap for Semiconductors, 2005 Edition, Process Integration, Devices and Structures," http://www.itrs.net/Links/2005ITRS/PIDS2005.pdf.
  19. M.I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.,  93, 137404 (2004).
    [CrossRef] [PubMed]
  20. J. Davis and J. Meindl, "Interconnect technology for gigascale integration," Kluwer (2003).

2006 (3)

2005 (1)

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

2004 (2)

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29,1069-1071 (2004).
[CrossRef] [PubMed]

M.I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.,  93, 137404 (2004).
[CrossRef] [PubMed]

2000 (1)

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

1997 (1)

1992 (1)

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

1989 (1)

1965 (1)

G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 114 (1965).

1961 (1)

V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).

1955 (1)

R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).

1954 (2)

Arledge, L.

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

Backer, S.A.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Boltasseva, A.

Bozhevolnyi, S. I.

Chern, J.H.

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

Conway, J.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Engelhardt, M.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

Frechet, J.M.J.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Fresco, Z.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Gramotnev, D. K.

Hosseini, A.

Huang, J.

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

Kobayashi, T.

Lee, H.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Leosson, K.

Li, P.C.

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

Massoud, Y.

Miller, D.A.B.

Moore, G. E.

G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 114 (1965).

Morimoto, A.

Nieuwoudt, A.

Nikolajsen, T.

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

Padalka, V.G.

V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).

Philip, R.

R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).

Pile, D. F. P.

Schindler, G.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

Schulz, L.G.

Shklyarevskii, I.N.

V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).

Steinhögl, W.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

Steinlesberger, G.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

Stockman, M.I.

M.I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.,  93, 137404 (2004).
[CrossRef] [PubMed]

Suez, I.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Takahara, J.

Taki, H.

Tangherlini, F. R.

Traving, M.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

Trompette, J.

R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).

Vedantam, S.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Yablonovitch, E.

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Yamagishi, S.

Yang, P.

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

Compt. Rend. (1)

R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).

Electronics (1)

G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 114 (1965).

IEEE Electron. Device Lett. (1)

J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992).
[CrossRef]

J. Appl. Phys. (1)

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Vac. B (1)

S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).

Opt. Express (2)

Opt. Lett. (3)

Opt. Spectr. U.S.S.R. (1)

V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).

Phys. Rev. B (1)

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

M.I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.,  93, 137404 (2004).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

Other (4)

"International Technology Roadmap for Semiconductors, 2005 Edition, Interconnect," http://www.itrs.net/Links/2005ITRS/Interconnect2005/Interconnect2005.pdf.

T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, and K. Hane, Nano-Optics (Springer, 2002), Chap. 5.

"International Technology Roadmap for Semiconductors, 2005 Edition, Process Integration, Devices and Structures," http://www.itrs.net/Links/2005ITRS/PIDS2005.pdf.

J. Davis and J. Meindl, "Interconnect technology for gigascale integration," Kluwer (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Electrostatic interconnect geometry where a victim wire’s potential is changed as a result of capacitive coupling, C wire-wire, to adjacent aggressor wires. (b) Geometry of adjacent cylindrical plasmonic waveguides where optical power couples from the aggressor into the victim.

Fig. 2.
Fig. 2.

Plot of the electric field magnitude superposed on cross-sections of various plasmonic waveguide geometries. (a) 55×100nm V-groove (b) 300×63.5nm SiO2 strip in Ag (c) 47×47nm Ag square in SiO2 and (d) 50nm diameter Ag cylinder in SiO2. Each plot is normalized to the peak field. Note that the geometric scale varies between plots to best illustrate the field distribution.

Fig. 3.
Fig. 3.

The signal delay time for a Cu interconnect in an SiO2 dielectric of width d and wire height:width aspect ratios of both 1.0 (square cross-section) and that reported by ITRS [1], surrounded with adjacent interconnects at a pitch:width ratio of 3:1. Also plotted is the signal delay for an isolated SP waveguide (a Ag cylinder of diameter d in SiO2) at two different optical carrier frequencies (300THz, 600THz, or vacuum wavelengths 1 μm and 500nm).

Fig. 4.
Fig. 4.

Calculated attenuation lengths of SPs on Ag cylindrical wires of various diameters in a SiO2 dielectric. The attenuation is weak at long wavelengths and large diameter wires, where SP confinement is weak and much of the SP energy lies in the relatively loss free dielectric.

Fig. 5.
Fig. 5.

Cross-over lengths beyond which it is more energy efficient to communicate via conventional electric interconnects rather than via SP interconnects due to attenuation of SPs. An operating voltage of 1V was assumed for electric interconnects of width d, unit aspect ratio and pitch:width ratio 3:1. The SP waveguides were assumed to be Ag cylinders of diameter d with no coupling to adjacent waveguides.

Fig. 6.
Fig. 6.

The 25% coupling lengths for 1ps rise time pulses in electrostatic interconnect technology, plotted as a function of wire pitch for three fixed wire widths (10nm, 50nm, 100nm) and unit aspect ratio. Also shown are the 25% coupling lengths for SP interconnects for two fixed wire widths (10nm, 50nm) at two operating frequencies (300THz and 600THz, or vacuum wavelengths 1µm and 500nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( E 2 dA ) 2 E 2 dA
γ 2 I 1 ( γ 1 a ) K 0 ( γ 2 a ) γ 1 I 0 ( γ 1 a ) K 1 ( γ 2 a ) = ε 2 ε 1
γ i = ( k 2 ε i ω 2 c 0 2 ) 1 2
2 x 2 [ V 1 x t V 2 x t V 3 x t ] = r [ j = 0,2,3 c 1 j c 12 c 13 c 21 j = 0,1,3 c 2 j c 23 c 31 c 32 j = 0,1,2 c 3 j ] t [ V 1 x t V 2 x t V 3 x t ]

Metrics