Abstract

In this letter, we first present the theoretical basis for coherent optical OFDM systems in direct up/down conversion architecture. We then demonstrate the transmission performance through simulation for WDM systems with coherent optical OFDM (CO-OFDM) including the fiber nonlinearity effect. The results show that the system Q of the WDM channels at 10 Gb/s is over 13.0 dB for a transmission up to 4800 km of standard-single-mode-fiber (SSMF) without dispersion compensation. A novel technique of partial carrier filling (PCF) for improving the non-linearity performance of the transmission is also presented. The system Q of the WDM channels with a filling factor of 50 % at 10 Gb/s is improved from 15.1 dB to 16.8 dB for a transmission up to 3200 km of SSMF without dispersion compensation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Commmications, (Artech House, Boston, 2003).
  2. W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42,587 - 588 (2006).
    [CrossRef]
  3. J. Lowery, L. Du, and J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2006), Paper PDP39.
  4. I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4,3767-3775 (2006).
    [CrossRef]
  5. "Supplement to IEEE standard for information technology telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band," in IEEE Std 802.11a-1999, (1999)
  6. E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
    [CrossRef]
  7. J. D. Berger, D. Anthon, S. Dutta, F. Ilkov, and I. -F. Wu, "Tunable MEMS Devices for Reconfigurable Optical Networks," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThD1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThD1.
  8. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, S. Bigo, "Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation," in Tech. Dig., ECOC’2006 (Cannes, France, 2006), post-deadline paper, Th.4.3.6.
  9. N. S. Bergano, "Wavelength division multiplexing in long-haul transoceanic transmission systems," J. Lightwave Technol. 23,4125-4139 (2005).
    [CrossRef]

2006

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42,587 - 588 (2006).
[CrossRef]

I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4,3767-3775 (2006).
[CrossRef]

2005

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

N. S. Bergano, "Wavelength division multiplexing in long-haul transoceanic transmission systems," J. Lightwave Technol. 23,4125-4139 (2005).
[CrossRef]

Anthon, D.

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42,587 - 588 (2006).
[CrossRef]

Bergano, N. S.

Djordjevic, I. B.

I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4,3767-3775 (2006).
[CrossRef]

Hutchins, J.

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

Ip, E.

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

Kahn, J. P.

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

Shieh, W.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42,587 - 588 (2006).
[CrossRef]

Vasic, B.

I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4,3767-3775 (2006).
[CrossRef]

Electron. Lett.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42,587 - 588 (2006).
[CrossRef]

IEEE Phot. Technol. Lett.

E. Ip, J. P. Kahn, D. Anthon and J. Hutchins, "Linewidth measurements of MEMS-based tunable lasers for phase-locking applications," IEEE Phot. Technol. Lett. 17,2029 - 2031 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4,3767-3775 (2006).
[CrossRef]

Other

"Supplement to IEEE standard for information technology telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band," in IEEE Std 802.11a-1999, (1999)

J. Lowery, L. Du, and J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2006), Paper PDP39.

S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Commmications, (Artech House, Boston, 2003).

J. D. Berger, D. Anthon, S. Dutta, F. Ilkov, and I. -F. Wu, "Tunable MEMS Devices for Reconfigurable Optical Networks," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThD1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThD1.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, S. Bigo, "Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation," in Tech. Dig., ECOC’2006 (Cannes, France, 2006), post-deadline paper, Th.4.3.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Conceptual diagram of a CO-OFDM system

Fig. 2.
Fig. 2.

Optical Spectra for 10 Gbit/s CO-OFDM, optical duobinary and conventional IM signal with the same average power

Fig. 3.
Fig. 3.

Constellation of received data

Fig. 4.
Fig. 4.

Constellation of received data after removing chromatic dispersion. Stars show the average of each OFDM symbol

Fig. 5.
Fig. 5.

OFDM symbol phase evolution

Fig. 6.
Fig. 6.

Constellations of received data after removing chromatic dispersion and average phase noise of one OFDM symbol

Fig. 7.
Fig. 7.

System Q versus the optical power of each WDM channel

Fig. 8
Fig. 8

Optimal optical power of each WDM channel and maximum system Q versus fiber transmission distance

Fig. 9
Fig. 9

(a) Original OFDM symbol. (b) OFDM symbol after filling zeros

Fig. 10.
Fig. 10.

System Q versus the optical power of each WDM channel with and without partial filling

Fig. 11.
Fig. 11.

Maximum system Q for different filling factors

Fig. 12.
Fig. 12.

Optical Spectra for 10 Gbit/s CO-OFDM of filling zero factor ½, CO-OFDM without filling zeros, optical duobinary and conventional IM signal with the same average power

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = i = + k = 1 k = N sc c ik ( t i T s ) exp ( j 2 π f k ( t i T s )
f k = k 1 t s
( t ) = { 1 , ( Δ G < t t s ) 0 , ( t Δ G , t > t s )
s ( t ) = i = + k = N sc 2 + 1 k = N sc 2 c ik ( t i T s ) exp ( j 2 π f k ( t i T s )
Δ G C D t Nsc f 2 t s
ϕ = 1 2 β 2 ω 2 L
β 2 = λ 2 2 πc D
ϕ i = 0.25 mod ( 4 arg ( C ik ) , 2 π )
q = ( 1 NN SC i = 1 N k = 1 N SC C ik C i , AVG 2 C i , AVG 2 ) 1
C i , AVG = C ik k

Metrics