Abstract

In recent years, many methods were developed to improve the efficiency of an OLED. In this paper, we investigate the effects of some main factors contributing to the extraction efficiency. These factors include the polarization of the source, the distance between the source and the metal, and the thickness of the layers. We will also discuss the effect of periodic patterns such as a grating structure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  2. L. H. Rigneault, F. Lemarchand, A. Sentenac, and H. Giovannini, "Extraction of light from sources located inside waveguide grating structures," Opt. Lett. 24, 148-150 (1999).
    [CrossRef]
  3. Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
    [CrossRef]
  4. E. G. Thompson, An Introduction to the Finite Element Method, (New York: Wiley 2005).
  5. N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
    [CrossRef]
  6. J. D. Jackson, Classical Electrodynamics, (New York: Wiley. 1998).
  7. L. E. Ballentine, Quantum Mechanics - a Modern Development, (World Scientific Publishing Co. Pte. Ltd. 2003).

2003 (1)

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

1999 (1)

1998 (1)

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1994 (1)

N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
[CrossRef]

Barnes, W. L.

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

Bradley, D. D. C.

N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
[CrossRef]

Friend, R. H.

N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
[CrossRef]

Giovannini, H.

Greenham, N. C.

N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
[CrossRef]

Huh, J.

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Kim, G. H.

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Kim, S.

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Lee, Y. H.

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Lee, Y. J.

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Lemarchand, F.

Rigneault, L. H.

Sentenac, A.

Adv. Mater. (1)

N. C. Greenham, R. H. Friend, and D. D. C. Bradley, "Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

Y. J. Lee, S. Kim, J. Huh, G. H. Kim, and Y. H. Lee, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

Opt. Lett. (1)

Other (3)

E. G. Thompson, An Introduction to the Finite Element Method, (New York: Wiley 2005).

J. D. Jackson, Classical Electrodynamics, (New York: Wiley. 1998).

L. E. Ballentine, Quantum Mechanics - a Modern Development, (World Scientific Publishing Co. Pte. Ltd. 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(a). the structure of an OLED and (b). a simplified configuration used in our simulation.

Fig. 2.
Fig. 2.

Only the light emitted within the surface-escape cone contributes to the light extraction

Fig. 3.
Fig. 3.

The polarization of the dipole can be decomposed into a) a dipole vector that is parallel to the interface and b) a vector perpendicular to the interface. The yellow area is a rough indication of the radiation pattern for the two indicated orientations of the dipole.

Fig. 4.
Fig. 4.

A current source along y-direction in air a) Electric field b) Intensity in the far field

Fig. 5.
Fig. 5.

(a). A current source located in a half space of refractive index n=1.58 above a perfectly conducting metal plane and b) the intensity of the far field for source-metal distances at 50nm, 100nm ,150nm and 200nm

Fig. 6.
Fig. 6.

The total energy radiated as a function of the distance between the source and the metal plane. The red line indicates the radiated energy into the upper-half space in a homogeneous polymer space without metal.

Fig. 7.
Fig. 7.

(a). A one-layer system with flat surface. (b). The far field intensity pattern is influenced by the metal-source distance z0 and the thickness of the polymer layer d.

Fig. 8.
Fig. 8.

Total radiated energy as function of the thickness of the polymer layer for a dipole in the one-layer system shown in Fig.7-a). The distance of the dipole to the metal is 100nm.

Fig. 9.
Fig. 9.

(a). A current source with a row of small scatterers. (b). Numerical solution of the radiated intensity generated by a current source and an infinitely long row of periodic scatterers. (c). Rayleigh anomaly.

Fig. 10.
Fig. 10.

(a). A periodic diffractive structure consisting of small ITO regions inside a polymer half space on top of a perfectly conducting metal plane. b) The far field intensity patterns with small scatterers for the metal-source distances of z0=50nm, l00nm, 150nm and 200nm.

Fig. 11.
Fig. 11.

When there is no guided mode inside the polymer layer, only weak peaks appear due to the Rayleigh anomaly. The source is 50nm above the metal plane and the thickness of the polymer layer is 100nm.

Fig. 12.
Fig. 12.

When the light propagates as a guided mode, there is a peak appears at its first diffraction order. The source is 100nm above the metal plane and the thickness of the polymer layer is 200nm.

Fig. 13.
Fig. 13.

A one dimensional grating in homogeneous space

Fig. 14.
Fig. 14.

The near field and the radiated intensity patterns for different widths of the periodic grooves. The source is in the center of the groove. The width of the groove from left to right is 100nm, 150nm and 200nm respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( r ) ( μ 0 ε 0 ) 1 2 k 0 4 n c 0 2 32 π 2 ( y y 0 ) 2 + ( z z 0 2 ) R 4 p ,
k z ( 1 ) k 0 n 1 E ̂ y ( k x , z 0 ) = k z ( 1 ) k 0 n 1 iωμ 0 I sin ( k z ( 2 ) z 0 ) k z ( 2 ) t 21 e i k z ( 1 ) d r 21 e i k z ( 2 ) d + e i k z ( 2 ) d ,
Ω S∙n d ( Ω ) = 1 2 Ω Re ( E J * ) d Ω .
k z k 0 n 0 E ̂ y ( k x , z ) = ω μ 0 I 2 k 0 n 0 e i k z z [ 1 i k 0 2 4 ( n 0 2 n s 2 ) A 0 m = M M H 0 ( 1 ) ( k 0 n 0 m 2 p 2 + z s 2 ) e i k x mp e i k z z s 0 ]

Metrics