Abstract

Metamaterials have been shown to revolution the control of electromagnetic waves in the microwave region showing unnatural phenomena such as negative refraction. Recently the freedom of design provided by metamaterials was exploited to design cloaking devices. In this work the author presents an alternative approach toward cloaking in the near infrared wavelength region by using inverse designed scattering optical elements. Two devices, measuring a few microns in size, are computer generated and numerically investigated. The results show that it is possible to isolate a 1μm2 area by guiding the a plane incident wave of the wavelength 1550nm around it.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An all-dielectric route for terahertz cloaking

Davy P. Gaillot, Charles Croënne, and Didier Lippens
Opt. Express 16(6) 3986-3992 (2008)

Thin low-loss dielectric coatings for free-space cloaking

Yaroslav Urzhumov, Nathan Landy, Tom Driscoll, Dimitri Basov, and David R. Smith
Opt. Lett. 38(10) 1606-1608 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
    [Crossref] [PubMed]
  2. S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
    [Crossref]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
    [Crossref] [PubMed]
  4. A. Håkansson and J. SÁnchez-Dehesa, “Optimal design of microscaled scattering optical elements,” Appl. Phys. Lett. 87,193506 (2005).
    [Crossref]
  5. A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
    [Crossref] [PubMed]
  6. L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
    [Crossref]
  7. P. Waterman, “Symmetry, Unitary, and Geometry in Electromagnetic Scattering,” Phys. Rev. D3 (1979).
  8. A. Ishimaru,Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, NJ, 1991).
  9. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Learning (Addison Wesley, Reading , MA, 1989).
  10. M. M. Spuhler, B. J. Offrein, G. L. Bona, R. Germann, I. Masserek, and D. Erni, “A very short Planar Silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol., 16,1680 (1998).
    [Crossref]
  11. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
    [Crossref]
  12. A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
    [Crossref] [PubMed]
  13. I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
    [Crossref]
  14. D. Wolpert and W. Macready, ”No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1,67 (1997).
    [Crossref]
  15. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
    [Crossref] [PubMed]
  16. A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
    [Crossref]
  17. S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
    [Crossref] [PubMed]

2006 (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
[Crossref] [PubMed]

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

2005 (2)

A. Håkansson and J. SÁnchez-Dehesa, “Optimal design of microscaled scattering optical elements,” Appl. Phys. Lett. 87,193506 (2005).
[Crossref]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
[Crossref]

2004 (3)

A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
[Crossref]

I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
[Crossref]

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

2003 (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

2001 (1)

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

1998 (1)

1997 (1)

D. Wolpert and W. Macready, ”No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1,67 (1997).
[Crossref]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Bona, G. L.

Bravo-Abad, J.

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

Chen, L.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

Cummer, S. A.

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Erni, D.

Germann, R.

Gheorma, I. L.

I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
[Crossref]

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Learning (Addison Wesley, Reading , MA, 1989).

Gondarenko, A.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

Haas, S.

I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
[Crossref]

Håkansson, A.

A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
[Crossref] [PubMed]

A. Håkansson and J. SÁnchez-Dehesa, “Optimal design of microscaled scattering optical elements,” Appl. Phys. Lett. 87,193506 (2005).
[Crossref]

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
[Crossref]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Ishimaru, A.

A. Ishimaru,Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, NJ, 1991).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Kawata, S.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

Levi, J.A. F.

I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
[Crossref]

Lipson, H.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
[Crossref]

Lipson, M.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
[Crossref]

Lopez-Zanon, D.

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

Macready, W.

D. Wolpert and W. Macready, ”No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1,67 (1997).
[Crossref]

Masserek, I.

Miyazaki, H. T.

A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
[Crossref] [PubMed]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Offrein, B. J.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Popa, B.

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

Preble, S.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
[Crossref]

Robinson, J.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Sánchez-Dehesa, J.

A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
[Crossref] [PubMed]

A. Håkansson and J. SÁnchez-Dehesa, “Optimal design of microscaled scattering optical elements,” Appl. Phys. Lett. 87,193506 (2005).
[Crossref]

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
[Crossref]

Sanchis, L.

A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
[Crossref]

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Schurig,, D.

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Smith, D. R.

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
[Crossref] [PubMed]

Smith1, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Spuhler, M. M.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Sun, H.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

Waterman, P.

P. Waterman, “Symmetry, Unitary, and Geometry in Electromagnetic Scattering,” Phys. Rev. D3 (1979).

Wolpert, D.

D. Wolpert and W. Macready, ”No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1,67 (1997).
[Crossref]

Appl. Phys. Lett. (3)

A. Håkansson and J. SÁnchez-Dehesa, “Optimal design of microscaled scattering optical elements,” Appl. Phys. Lett. 87,193506 (2005).
[Crossref]

L. Sanchis, A. Håkansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84,4460 (2004).
[Crossref]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86,061111 (2005).
[Crossref]

IEEE Trans. Evol. Comput. (1)

D. Wolpert and W. Macready, ”No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1,67 (1997).
[Crossref]

J. Appl. Phys. (1)

I. L. Gheorma, S. Haas, and J.A. F. Levi , “Aperiodic nanophotonic design,” J. Appl. Phys. 95,1420(2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Mater. (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2,117 (2003).
[Crossref] [PubMed]

Nature (1)

S. Kawata, H. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412,697 (2001).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B 70,214302 (2004).
[Crossref]

Phys. Rev. E (1)

S. A. Cummer, B. Popa, D. Schurig,, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74,036621 (2006).
[Crossref]

Phys. Rev. Lett. (2)

A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96,153902 (2006).
[Crossref] [PubMed]

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures,” Phys. Rev. Lett. 96,143904 (2006).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith1, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314,977 (2006).
[Crossref] [PubMed]

Other (3)

P. Waterman, “Symmetry, Unitary, and Geometry in Electromagnetic Scattering,” Phys. Rev. D3 (1979).

A. Ishimaru,Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, NJ, 1991).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Learning (Addison Wesley, Reading , MA, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. A schematic view of a 5-layers SOE cloaking device. The arrows illustrates the path of the incident light passing the device, set by the electric field Einc . The volume marked by the blue box at the center of the SOE structure outlines the cloaked area, where E = 0 is obtained. The white plane, placed at xf , is the plane of observations where the transmitted field has regained it initial shape, i.e. Einc .
Fig. 2.
Fig. 2. 13 layers single symmetric cloaking device. The figure shows the electromagnetic field distribution for, (a) the optimized SOE structure, (b) the optimized structure cloaking a rod placed at the origin. The black squares show a cross section of the SOE device. The black line at the origin marks the cloaked area and the black dashed line the plane of observation
Fig. 3.
Fig. 3. 21 layers double symmetric cloaking device. The figure shows the electromagnetic field distribution for, (a) the optimized SOE structure, (b) the optimized structure cloaking a rod placed at the origin. The black squares show a cross section of the SOE device. The black line at the origin marks the cloaked area and the black dashed line the plane of observation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( s ) = a + b + c + + c (| 1 γ |) ,

Metrics