Abstract

We observe -9.01±0.14 dB of squeezing and +15.12±0.14 dB of antisqueezing with a local oscillator phase locked in homodyne measurement. Suzuki et al. have pointed out two main factors in [Appl. Phys. Lett. 89, 061116 (2006)], which degrade the observed squeezing level:phase fluctuation in homodyne measurement and intracavity losses of an optical parametric oscillator for squeezing. We have improved the phase stability of homodyne measurement and have reduced the intracavity losses. We measure pump power dependences of the squeezing and antisqueezing levels, which show good agreement with theoretical calculations taking account of the phase fluctuation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
    [CrossRef]
  2. S. L. Braunstein and Peter van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005).
    [CrossRef]
  3. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
    [CrossRef] [PubMed]
  4. S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
    [CrossRef]
  5. T. Aoki, G. Takahashi, and A. Furusawa, "Squeezing at 946nm with periodically poled KTiOPO4," Opt. Express 14, 6930-6935 (2006).
    [CrossRef] [PubMed]
  6. T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, "Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4," Opt. Lett. 31, 2344-2346 (2006).
    [CrossRef] [PubMed]
  7. G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
    [CrossRef]
  8. E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
    [CrossRef]
  9. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
    [CrossRef]
  10. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
    [CrossRef]
  11. S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
    [CrossRef]
  12. H. Mabuchi, E. S. Polzik, and H. J. Kimble, "Blue-light-induced infrared absorption in KNbO3," J. Opt. Soc. Am. B 11, 2023-2029 (1994).
    [CrossRef]

2007

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

2006

2004

S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

2003

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

2001

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

1999

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

1998

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

1994

1992

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Akamatsu, D.

Aoki, T.

Bachor, H. A.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

Buchler, B. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Chou, C. W.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Fuchs, C. A.

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

Furusawa, A.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

T. Aoki, G. Takahashi, and A. Furusawa, "Squeezing at 946nm with periodically poled KTiOPO4," Opt. Express 14, 6930-6935 (2006).
[CrossRef] [PubMed]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, "Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4," Opt. Lett. 31, 2344-2346 (2006).
[CrossRef] [PubMed]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

Gao, J.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Glöckl, O.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

Goh, K. W.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Harb, C. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

Hétet, G.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

Kannari, F.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

Kimble, H. J.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

H. Mabuchi, E. S. Polzik, and H. J. Kimble, "Blue-light-induced infrared absorption in KNbO3," J. Opt. Soc. Am. B 11, 2023-2029 (1994).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Kozuma, M.

Lam, P. K.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

Lodahl, P.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Mabuchi, H.

McClelland, D. E.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

Pilypas, K. A.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

Polzik, E. S.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

H. Mabuchi, E. S. Polzik, and H. J. Kimble, "Blue-light-induced infrared absorption in KNbO3," J. Opt. Soc. Am. B 11, 2023-2029 (1994).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Ralph, T. C.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

Sasaki, M.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

Suzuki, S.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

Takahashi, G.

Tanimura, T.

van Loock, P.

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

Yokoi, Y.

Yonezawa, H.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

Zhang, T. C.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Appl. Phys. B

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic Spectroscopy with Squeezed Light for Sensitivity Beyond the Vacuum-State Limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Appl. Phys. Lett.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, "7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4," Appl. Phys. Lett. 89, 061116 (2006).
[CrossRef]

J. Appl. Phys.

S. Wang, V. Pasiskevicius, and F. Laurell, "Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4," J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, "Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J. Opt. B: Quantum Semiclassical Opt. 1, 469-474 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, "Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line," J. Phys. B 40, 221-226 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003).
[CrossRef]

S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, "Quantum versus classical domains for teleportation with continuous variables," Phys. Rev. A 64, 022321 (2001).
[CrossRef]

Science

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional Quantum Teleportation," Science 282, 706-709 (1998).
[CrossRef] [PubMed]

Other

S. L. Braunstein and Peter van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Schematic of experimental setup. SHG: second harmonic generator, KN: KNbO3 crystal, OPO: optical parametric oscillator, PPKTP: periodically poled KTiOPO4 crystal, PD: photo detector, MCC: mode cleaning cavity, LO: local oscillator, HD: balanced homodyne detector, ⊖: subtraction circuit, ⊗: mixing circuit (multiplier), FG: function generator, ATT: electrical attenuator, Servo: servo amplifier circuit for feedback system, PZTs: piezoelectric transducers, and SA: spectrum analyzer.

Fig. 2.
Fig. 2.

(Color online) Observed noise levels at the pump power of 100 mW. (i) Shot noise level. (ii) LO phase is locked at the squeezed quadrature. (iii) LO phase is locked at the antisqueezed quadrature. (iv) LO phase is scanned. These levels are normalized to make the shot noise level 0 dB. Measurement frequency: 1 MHz, resolution bandwidth: 30 kHz, and video bandwidth: 300 Hz. Traces (i), (ii), and (iii) are averaged for 20 times. The observed squeezing/antisqueezing levels are −9.01±0.14/+15.12±0.14 dB, respectively.

Fig. 3.
Fig. 3.

(Color online) Pump power dependences of the squeezing and antisqueezing levels. Normalized pump power is calculated by P / P th where P is the pump power and P th = 180 mW is the oscillation threshold of the OPO. Blue (red) circles indicate the observed squeezing (antisqueezing) levels. Black squares and solid/dotted curves indicate theoretically calculated values. Each square plot is calculated by using the measured intra-cavity losses at each pump power while the curves are calculated by using Eq. (3) in the condition of the phase fluctuation θ ˜ = 1.5° (solid) and 3.9° (dotted).

Fig. 4.
Fig. 4.

(Color online) Theoretically predicted squeezing level R_( θ ˜ , L, x opt( θ ˜ ,L)). Solid curve satisfies Eq. (3), which represents the relation between x and L in the present experimental condition. Our current position ( θ ˜ , L) = (1.5°, 0.0038) is shown by *.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ± R ± cos 2 θ ˜ + R sin 2 θ ˜ ,
R ± = 1 ± η ξ 2 ζρ 4 x ( 1 x ) 2 + 4 Ω 2 ,
L ( x ) = 0.00249 + 0.00222 x .
G ( P ) = 1 ( 1 x ( P ) ) 2 ,
x ( P ) = P P th .

Metrics