Abstract

In this paper, we study the novel propagation properties of an improved triangular-type air-core photonic bandgap fiber (PBGF) structured with an anti-resonant silica core surround, through a full-vector modal solver based on the finite-element method (FEM). At first, to realize a single-mode operation over a wide wavelength range, the fiber whose core is constructed by removing 1 air-hole and expanded is proposed and structurally-optimized. In particular, the structural parameters for the fiber that prevent the narrow-band transmission due to the existence of the surface modes and enhance the confinement of the power in the air-core are presented. For the realization of an ultimate low loss transmission, a 7-unit-cell PBGF is analyzed and we show that the 7-unit-cell PBGF can achieve not only lower confinement loss than that of regular-type 7-unit-cell PBGF, but also lower power fraction in the silica-ring when compared with the regular 19-unit-cell PBGF with an anti-resonant core surround, exhibiting an effectively single-mode operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, T. A. Birks, P. St. J. Russell, T. J. Shepherd, and D. M. Atkin, "Two-dimensional photonic band-gap structures as quasi-metals," Opt. Lett. 21, 507-509 (1996).
    [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. J. Broeng, S. E. Barkou, T. Sφndergaard, and A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98 (2000).
    [CrossRef]
  4. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
    [CrossRef] [PubMed]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  6. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
    [CrossRef] [PubMed]
  7. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
    [CrossRef] [PubMed]
  8. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
    [CrossRef]
  9. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004).
    [CrossRef] [PubMed]
  10. M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber," IEEE Photon. Technol. Lett. 17, 64-66 (2005).
    [CrossRef]
  11. M. Yan, P. Shum, and J. Hu, "Design of air-guiding honeycomb photonic bandgap fiber," Opt. Lett. 30, 465-467 (2005).
    [CrossRef] [PubMed]
  12. T. Haas, S. Belau, and T. Doll, "Realistic monomode air-core honeycomb photonic bandgap fiber with pockets," J. Lightwave Technol. 23, 2702-2706 (2005).
    [CrossRef]
  13. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  14. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
    [CrossRef] [PubMed]
  15. N. J. Florous, K. Saitoh, T. Murao, and M. Koshiba, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006).
    [CrossRef] [PubMed]
  16. L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
    [CrossRef]
  17. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation," Opt. Express 14, 2404-2412 (2006).
    [CrossRef] [PubMed]
  18. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006).
    [CrossRef] [PubMed]
  19. T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
    [CrossRef]
  20. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006).
    [CrossRef] [PubMed]
  21. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  22. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
    [CrossRef] [PubMed]
  23. M. Yan and P. Shum, "Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design," Opt. Lett. 30, 1920-1922 (2005).
    [CrossRef] [PubMed]
  24. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, "Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers," J. Lightwave Technol. 23, 4169-4177 (2005).
    [CrossRef]
  25. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  26. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]

2006

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
[CrossRef]

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation," Opt. Express 14, 2404-2412 (2006).
[CrossRef] [PubMed]

N. J. Florous, K. Saitoh, T. Murao, and M. Koshiba, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006).
[CrossRef] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2002

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2000

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1996

1986

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Atkin, D. M.

Barkou, S. E.

Belau, S.

Bird, D. M.

Birks, T. A.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Broderick, N. G. R.

Broeng, J.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Digonnet, M. J. F.

Doll, T.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Fan, S.

Farr, L.

Florous, N. J.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Haas, T.

Hu, J.

Kim, H. K.

Kino, G. S.

Knight, J. C.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Koshiba, M.

Litchinitser, N. M.

Mangan, B. J.

Mason, M. W.

McPhedran, R. C.

Mortensen, N. A.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Murao, T.

Petrovich, M. N.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Poletti, F.

Poli, F.

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Russell, P. S. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Selleri, S.

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
[CrossRef]

Shepherd, T. J.

Shin, J.

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004).
[CrossRef] [PubMed]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Shum, P.

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Usner, B.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Vincetti, L.

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
[CrossRef]

Wadsworth, W. J.

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

White, T. P.

Williams, D. P.

Yan, M.

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

IEEE J. Quantum Electron.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber," IEEE Photon. Technol. Lett. 17, 64-66 (2005).
[CrossRef]

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006).
[CrossRef]

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

J. Lightwave Technol.

Nature

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
[CrossRef] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation," Opt. Express 14, 2404-2412 (2006).
[CrossRef] [PubMed]

N. J. Florous, K. Saitoh, T. Murao, and M. Koshiba, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006).
[CrossRef] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

A portion of the 1/6 region in the unit cell of the improved triangular lattice which consists of air and silica, (b) cladding structure with structural parameters of d/Λ= 0.98, r/Λ= 0.085, θ = 80.0°, and (c) PBG diagram for the prescribed structural parameters.

Fig. 2.
Fig. 2.

Cross sections of the proposed PBGFs whose defected cores are realized (a) by removing 1 air hole and expanded (core radius R ≈ 3.2 μm), and (b) by removing 7 air-holes (R ≈ 6.4 μm). In both cases, the structural parameters of the cladding are d/Λ = 0.98, r/Λ = 0.085, θ = 80.0°, and Λ = 4.0 μm.

Fig. 3.
Fig. 3.

(a). Effective refractive indices of the guided modes as a function of normalized wavelength for the fiber whose core is realized by removing 1 air-hole and expanded, with normalized silica-ring thickness t/Λ = 0.01. The black solid curves represent the PBG boundaries. The fundamental mode is represented by the red curve, the second-order mode by the blue curve, and the third-order mode by the green curve. (b) Surface plots for the z-component of the Poynting vector for the fundamental-like mode at normalized wavelength of λ/Λ = 0.4.

Fig. 4.
Fig. 4.

Confinement losses of the fiber whose core is realized by removing 1 air-hole and expanded for (a) 6 rings (b) 10 rings. In both cases, t = 0.01Λ and Λ = 4.0 μm.

Fig. 5.
Fig. 5.

The wavelength dependence of the power fraction in the air-core of the fundamentallike mode for PBGF with t = 0.01Λ (red curve), and t = 0.02Λ (blue curve), where Λ = 4.0 μm.

Fig. 6.
Fig. 6.

(a) Effective refractive indices of the guided modes as a function of the normalized wavelength for the fiber whose core is realized by removing 1 air-hole and expanded, where t/Λ = 0.095, satisfying the first anti-resonant condition. (b) Surface plot for the z-component of the Poynting vector for the fundamental-like mode at a normalized wavelength of λ/Λ = 0.4.

Fig. 7.
Fig. 7.

Confinement losses of the fiber whose core is realized by removing 1 air-hole and expanded for (a) 6 rings (b) 10 rings. In both cases, t = 0.095Λ and Λ = 4.0 μm.

Fig. 8.
Fig. 8.

The wavelength-dependence of the power fraction in (a) the air-core, and (b) the silica-ring for the fundamental-like mode of the proposed PBGF whose core is realized by removing 1 air-hole and expanded, with d/Λ = 0.98, r/Λ = 0.085, θ = 80.0°, t = 0.095Λ, and Λ = 4.0 μm.

Fig. 9.
Fig. 9.

Variation color-map of the power fraction in (a) the air-core, and (b) the silica-ring for the fundamental-like mode of the PBGF, with d/Λ = 0.98, r/Λ = 0.085, θ = 80.0°, and Λ = 4.0μm.

Fig. 10.
Fig. 10.

(a). Effective refractive indices of the guided modes as a function of normalized wavelength for the fiber whose core is realized by removing 7 air-holes, where t/Λ = 0.095 to satisfy the anti-resonant condition. (b) Surface plots for the z-component of the Poynting vector for the fundamental-like mode at normalized wavelength of λ/Λ = 0.4.

Fig. 11.
Fig. 11.

Confinement losses of the fiber whose core is realized by removing 7 air-holes for 6 rings for (a) the fundamental-like and EH11-like modes, and (b) for the HE21-like, TE01-like, and HE31-like modes, where Λ = 4.0 μm and t/Λ = 0.095 to satisfy the anti-resonant condition.

Fig. 12.
Fig. 12.

The wavelength dependence of the power fraction (a) in the air-core, and (b) in the silica-ring for the fundamental-like mode of the proposed PBGF whose core is realized by removing 7 air-holes with d/Λ = 0.98, r/Λ = 0.085, θ = 80.0°, t = 0.095Λ, and Λ = 4.0 μm.

Fig. 13.
Fig. 13.

The wavelength dependence of the power fraction (a) in the air-core, and (b) in the silica-ring for the fundamental-like mode of the proposed PBGF whose core is realized by removing 7 air-holes with d/Λ = 0.98, r/Λ = 0.085, θ = 80.0°, t = 0.088Λ, and Λ = 4.0 μm.

Fig. 14.
Fig. 14.

Confinement losses of the fiber whose core is realized by removing 7 air-holes, and having 5 air-hole rings for the fundamental-like (red, blue, green, purple, cyan, and yellow curves) and second-order modes (black curves), where Λ = 4.0 μm and t/Λ = 0.088 to satisfy the anti-resonant condition at the wavelength of 1.48 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s = Λ d ,
θ = 30 ° + θ 2 ,
r = r cos θ s 2 1 cos θ ,
O 1 x = d 2 r ,
O 1 y = Λ 2 3 ( r + s 2 ) tan θ .
t = ( 2 N + 1 ) λ 4 n 2 2 1 + ( λ 4 R ) 2 , N = 0,1,2 , .
η = glass annulus dA E × H * z cross section dA E × H * z .

Metrics