Abstract

We investigate optical excitations on single silver nanospheres and nanosphere composites with the Finite Difference Time Domain (FDTD) method. Our objective is to achieve polarization control of the enhanced local field, pertinent to SERS applications. We employ dimer and quadrumer structures, which can display broadband and highly confined near-field-intensity enhancement comparable to or exceeding the resonant value of smaller sized isolated spheres. Our results demonstrate that the polarization of the enhanced field can be controlled by the orientation of the multimers in respect to the illumination, rather than the illumination itself. In particular, we report cases where the enhanced field shares the same polarization with the exciting field, and cases where it is predominantly perpendicular to the source field. We call the later phenomenon depolarized enhancement. Furthermore, we study a realizable nanolens based on a tapered self-similar silver nanosphere array. The time evolution of the fields in such structures show conversion of a diffraction limited Gaussian beam to a focused spot, through sequential coupling of the nano-array spheres’ Mie-plasmons. For a longitudinally excited nanolens design we observed the formation of an isolated focus with size about one tenth the vacuum wavelength. We believe such nanolens will aid scanning near-field optical microscopy (SNOM) detection and the excitation of surface plasmon based guiding devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ruppin, "Spherical and cylindrical surface polaritons in solids," in Electromagnetic Surface Modes, pp. 345-398 (John Wiley & Sons, Belfast, 1982).
  2. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
    [CrossRef]
  3. S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  4. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
    [CrossRef]
  5. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
    [CrossRef] [PubMed]
  6. S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  8. C. Girard and R. Quidant, "Nearfield optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6141.
    [CrossRef] [PubMed]
  9. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
    [CrossRef] [PubMed]
  10. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1557.
    [CrossRef] [PubMed]
  11. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
    [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA).
  13. J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Molding the Flow of Light. (Princeton Univ. Press, Princeton N. J., 1995).
  14. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
    [CrossRef] [PubMed]
  15. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  16. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
    [CrossRef]
  17. C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005).
    [CrossRef]
  18. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
    [CrossRef]
  19. P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
    [CrossRef]
  20. H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  21. P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
    [CrossRef]
  22. W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3160.
    [CrossRef] [PubMed]
  23. S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002).
    [CrossRef]
  24. G. Mie, "Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen," Ann. Physik 25, 377 (1908).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Macmillan Co., New-York, 1964).
  26. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1993).
  27. J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
    [CrossRef]
  28. S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag. 45, 392-400 (1997).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1989).
  31. P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
    [CrossRef] [PubMed]
  32. J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-12-655.
    [CrossRef] [PubMed]
  33. H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
    [CrossRef]
  34. J. P. Kottman and O.J.F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001).
    [CrossRef]
  35. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004).
    [CrossRef] [PubMed]
  36. 3. S. Enoch, R. Quidant and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3422.
    [CrossRef] [PubMed]
  37. I. Romero, J. Aizpurua, G. W. Bryant and F.J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9988.
    [CrossRef] [PubMed]
  38. R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987).
    [CrossRef]
  39. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
    [CrossRef] [PubMed]
  40. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  41. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
    [CrossRef]
  42. R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
    [CrossRef]
  43. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  44. S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
    [CrossRef]
  45. F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
    [CrossRef]
  46. A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner and F. R. Aussenegg, "Electron beam lithography, a helpful tool for nanooptics," in press Micro. Eng.
  47. R. Fikri, "Modelling of the apertureless near-field scanning optical microscope with the finite element method," Ph. D. thesis, Universit de Technologie de Troyes (2003).
  48. P. G. Kik, S. A. Maier, and H. A. Atwater, "Plasmon printing - a new approach to near-field lithography," Mat. Res. Soc. Symp. Proc. 705, Y3.6 (2002).

2006 (7)

H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
[CrossRef] [PubMed]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1557.
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant and F.J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9988.
[CrossRef] [PubMed]

2005 (6)

R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
[CrossRef]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005).
[CrossRef]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

2004 (5)

P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004).
[CrossRef] [PubMed]

3. S. Enoch, R. Quidant and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3422.
[CrossRef] [PubMed]

C. Girard and R. Quidant, "Nearfield optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6141.
[CrossRef] [PubMed]

2003 (6)

W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3160.
[CrossRef] [PubMed]

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002).
[CrossRef]

2001 (5)

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-12-655.
[CrossRef] [PubMed]

J. P. Kottman and O.J.F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001).
[CrossRef]

2000 (2)

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

1998 (1)

1997 (1)

S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag. 45, 392-400 (1997).
[CrossRef]

1987 (1)

R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1908 (1)

G. Mie, "Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen," Ann. Physik 25, 377 (1908).
[CrossRef]

Aizpurua, J.

Alù, A.

Aslan, K.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Aussenegg, F. R.

Bachelot, R.

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

Badenes, G.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

Blanco, L. A.

S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Borjensson, L.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

Brongersma, M. L.

R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Bryant, G. W.

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
[CrossRef]

Challener, W.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Claro, F.

R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

Cummer, S. A.

S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag. 45, 392-400 (1997).
[CrossRef]

David, J. J.

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

Dhili, F.

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

Economou, E. N.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

Engheta, N.

Enoch, S.

Etchegoin, P. G.

P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
[CrossRef] [PubMed]

Fan, S.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Fan, S. H.

H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
[CrossRef]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002).
[CrossRef]

Fuchs, R.

R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987).
[CrossRef]

Galloway, C.

P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
[CrossRef] [PubMed]

Garcia de Abajo, F.J.

Geddes, C. D.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Girard, C.

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Guo, S. H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

Halas, N. J.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004).
[CrossRef] [PubMed]

Heyman, E.

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Kall, M.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Kik, P. G.

P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Kottman, J. P.

Kottmann, J.

Krenn, J. R.

Lakowicz, J. R.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

Le Ru, E. C.

P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
[CrossRef] [PubMed]

Leitner, A.

Leonenko, Z.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

Lerondel, G.

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Maier, S. A.

P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Martin, O.

Martin, O.J.F.

Mie, G.

G. Mie, "Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen," Ann. Physik 25, 377 (1908).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Mock, J. J.

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

Nelson, R. O.

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

Nieto-Vesperinas, M.

S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Nordlander, P.

C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

Oubre, C.

C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Peng, C.

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Phaneuf, R. J.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

Quidant, R.

Quinten, M.

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Romero, I.

Royer, P.

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

Rumyantseva, A.

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

Salandrino, A.

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004).
[CrossRef] [PubMed]

Schultz, S.

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

Selker, M. D.

R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Sendur, I.

Shen, J. T.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
[CrossRef]

Smith, D.

Smith, D. R.

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Szmacinski, H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

Veronis, G.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

Young, J. L.

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Ann. Physik (1)

G. Mie, "Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen," Ann. Physik 25, 377 (1908).
[CrossRef]

Appl. Phys. Lett. (3)

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag. 45, 392-400 (1997).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004).
[CrossRef] [PubMed]

J. Fluoresc. (1)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

J. Microsc. (2)

F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003).
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005).
[CrossRef]

Nano Lett. (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).
[CrossRef]

Nature (London) (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005).
[CrossRef]

Opt. Express (7)

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-12-655.
[CrossRef] [PubMed]

W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3160.
[CrossRef] [PubMed]

3. S. Enoch, R. Quidant and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3422.
[CrossRef] [PubMed]

C. Girard and R. Quidant, "Nearfield optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6141.
[CrossRef] [PubMed]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1557.
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant and F.J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9988.
[CrossRef] [PubMed]

Opt. Lett. (2)

Phs. Rev. Lett. (1)

H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (7)

S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987).
[CrossRef]

R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004).
[CrossRef]

Phys. Rev. E (1)

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. (1)

S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000).
[CrossRef] [PubMed]

Other (9)

R. Ruppin, "Spherical and cylindrical surface polaritons in solids," in Electromagnetic Surface Modes, pp. 345-398 (John Wiley & Sons, Belfast, 1982).

A. Taflove and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA).

J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Molding the Flow of Light. (Princeton Univ. Press, Princeton N. J., 1995).

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner and F. R. Aussenegg, "Electron beam lithography, a helpful tool for nanooptics," in press Micro. Eng.

R. Fikri, "Modelling of the apertureless near-field scanning optical microscope with the finite element method," Ph. D. thesis, Universit de Technologie de Troyes (2003).

P. G. Kik, S. A. Maier, and H. A. Atwater, "Plasmon printing - a new approach to near-field lithography," Mat. Res. Soc. Symp. Proc. 705, Y3.6 (2002).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1989).

M. Born and E. Wolf, Principles of Optics, 2nd ed. (Macmillan Co., New-York, 1964).

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1993).

Supplementary Material (2)

» Media 1: AVI (2064 KB)     
» Media 2: AVI (1550 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Spectral response of the normalized near-field enhancement at the center of the nanoparticle. The plane of illumination and polarization of the source are shown in the upper panel. The dotted lines represent the FDTD results, while the solid lines the corresponding Mie calculations. The solid circles represent Mie calculations, where the actual tabulated Johnson and Christy data [29] are used for the dielectric function of silver. In the inset, we also show the on-resonance field distribution for two different nanoparticle sizes, –with radius 25 nm and 50 nm respectively– as indicated with the arrows.

Fig. 2.
Fig. 2.

Spectral response of the near field intensity enhancement in the vicinity of touching dimers. The top panel indicates the position of the detectors where the field is monitored. The vertical axis represents the z direction, i.e. the illumination direction for case (a) and the y-direction, i.e., the normal to both the illumination direction and exciting field polarization, for case (b). The color of the plotted lines matches the color of the specified detector.

Fig. 3.
Fig. 3.

Normalized time averaged intensity plots for three different excitation wavelengths: λ 0=1136 nm (left panel), 833 nm (middle panel) and 625 nm (right panel). In each case we see the intensity on the xy- plane slicing through the middle of the dimer, as well as in the entire 3D space. The 3D plots display two iso-intensity surfaces, representing an enhancement value of 100 (red) and 10 (green) respectively. For comparison in the bottom panel we show the intensity enhancement around a single silver sphere with 25 nm radius, on and off- resonance

Fig. 4.
Fig. 4.

Intensity enhancement for a dimer illuminated as shown in the upper schematics, at the indicated detector point. The contributions of the different components of the electric field to the total intensity enhancement are shown separately. It is clear, the predominant contribution comes from the field along the wave vector (orange vector), which is perpendicular to the illumination plane. In other words, the enhanced field became orthogonal to the driving field. Thus, we observed a depolarized enhancement phenomenon.

Fig. 5.
Fig. 5.

Iso-surfaces representing an intensity enhancement value of 100 (red) and 10 (green) for quadrumers lying on the illuminating plane (top panel), or normally to the illuminating plane (bottom panel). We show the total enhancement [left: in (a) and (c)] and the enhancement corresponding to the major contributing field component, which is along x for case (b) and along z for case (d).

Fig. 6.
Fig. 6.

Outline of different cases studied in this section. The spectral response as well as the type of enhancement, - polarized or depolarized-, is briefly described for each case.

Fig. 7.
Fig. 7.

(a). (1.55 MB) Self-similar silver nanosphere array acting as a nanolens. A Gaussian source polarized perpendicularly to the array axis is converted into foci with spot size about one tenth the vacuum wavelength, λ 0. [Media 1] (b) The time averaged intensity in source (black lines) and focus plane (red lines). The dotted lines represent the total intensity, while the solid lines represent the contribution from the component of the field parallel to the incident source polarization.

Fig. 8.
Fig. 8.

(a). (2.064 MB) Another design of a self-similar-silver-nanosphere-array nanolens. A Gaussian source polarized parallelly to the array axis is converted into a subwavelength focus with size of the order of one tenth the vacuum wavelength, λ 0. [Media 2] (b) The time averaged intensity in source (black lines) and focus (red lines) plane are also shown. The dotted lines represent the total intensity, while the solid lines represent the contribution from the component of the field parallel to the incident source polarization.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 ω ( ω + i Γ D ) .
J P = ε 0 χ e ( ω ) E ( ω ) ,
t E = 1 ε 0 ε ( × H J P )
t J P + Γ D J P = ε 0 ω p 2 E .
I ( x , y , z ) = 1 2 ε 0 ε glass t 0 t 0 + T E x 2 ( x , y , z , t ) + E y 2 ( x , y , z , t ) + E z 2 ( x , y , z , t ) 1 2 ε 0 ε glass t 0 t 0 + T E 0 x 2 ( x , y , z , t ) + E 0 y 2 ( x , y , z , t ) + E 0 z 2 ( x , y , z , t ) ,

Metrics