Abstract

Surface plasmon assisted lithography is currently a matter of growing interest since it allows nanopatterning in photosensitive films without being restricted by the diffraction limit. Using specially designed metallic nanostructures coated with a photosensitive azobenzene-dye polymer, we have generated a plasmon interference field in the polymer layer. The atomic force microscopy observation of the azo-dye polymer surface after exposure exhibits complex topographies which are found to be well explained by an analytically computed surface plasmon interference model that highlights the polarization influence on the pattern shape. The results presented here are believed to be a first step towards a new approach of high resolution plasmonic nanolithography based on the use of longitudinal field components.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
    [CrossRef]
  2. J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
    [CrossRef]
  3. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  4. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
    [CrossRef]
  5. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
    [CrossRef] [PubMed]
  6. D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107 (2005).
    [CrossRef]
  7. X. Guo, J. Du, Y. Guo, and J. Yao, "Large-area surface-plasmon polariton interference lithography," Opt. Lett. 31, 2613-2615 (2006).
    [CrossRef] [PubMed]
  8. D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Lett. 6, 2279-2283 (2006).
    [CrossRef] [PubMed]
  9. S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
    [CrossRef]
  10. C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
    [CrossRef] [PubMed]
  11. E. Silberstein, P. Lalanne, J. P. Hugonin and Q. Cao,"Use of grating theories in integrated optics," J. Opt. Soc. Am. A 18, 2865-2875 (2001).
    [CrossRef]
  12. Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht and L. Novotny, "Longitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films," Opt. Lett. 31, 613-615 (2006).
    [CrossRef] [PubMed]
  13. T. Grosjean and D. Courjon, "Photopolymers as vectorial sensors of the electric field," Opt. Exp. 14, 2203-2210 (2006).
    [CrossRef]
  14. H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
    [CrossRef] [PubMed]
  15. P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
    [CrossRef]

2006

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, "Photopolymers as vectorial sensors of the electric field," Opt. Exp. 14, 2203-2210 (2006).
[CrossRef]

H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht and L. Novotny, "Longitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films," Opt. Lett. 31, 613-615 (2006).
[CrossRef] [PubMed]

X. Guo, J. Du, Y. Guo, and J. Yao, "Large-area surface-plasmon polariton interference lithography," Opt. Lett. 31, 2613-2615 (2006).
[CrossRef] [PubMed]

2005

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

2004

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

2001

1999

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

1998

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
[CrossRef]

Attwood, D.

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

Bachelot, R.

Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht and L. Novotny, "Longitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films," Opt. Lett. 31, 613-615 (2006).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Balasubramanian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Bian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Billot, L.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

Cao, Q.

Chang, S. H.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Chen, S. C.

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Courjon, D.

T. Grosjean and D. Courjon, "Photopolymers as vectorial sensors of the electric field," Opt. Exp. 14, 2203-2210 (2006).
[CrossRef]

Du, J.

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Fiorini, C.

P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
[CrossRef]

Gao, H.

H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Gilbert, Y.

Grand, J.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Gray, S. K.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Grosjean, T.

T. Grosjean and D. Courjon, "Photopolymers as vectorial sensors of the electric field," Opt. Exp. 14, 2203-2210 (2006).
[CrossRef]

Guo, X.

Guo, Y.

Gwyn, C. W.

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

Henzie, J.

H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Hinsberg, D. W.

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Hoffnagle, J. A.

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Houle, F. A.

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Hubert, C.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Hugonin, J. P.

Ishihara, T.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Kim, D. Y.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Kostcheev, S.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Kumar, J.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Lalanne, P.

Lefin, P.

P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
[CrossRef]

Lérondel, G.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Li, L.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Novotny, L.

Nunzi, J.-M.

P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
[CrossRef]

Odom, T. W.

H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Royer, P.

Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht and L. Novotny, "Longitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films," Opt. Lett. 31, 613-615 (2006).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Rumyantseva, A.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Sanchez, M.

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Schatz, G. C.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Shao, D. B.

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Silberstein, E.

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Stulen, R.

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Sweeney, D.

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

Tripathy, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Vial, A.

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Wiederrecht, G. P.

Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht and L. Novotny, "Longitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films," Opt. Lett. 31, 613-615 (2006).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

Williams, J. M.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

Yao, J.

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Appl. Phys. Lett.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

J. Appl. Phys.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, "Photoinduced deformations on azobenzene polymer films," J. Appl. Phys. 86, 4498-4508 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

J. A. Hoffnagle, D. W. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Nano Lett.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lérondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, "Near-field photochemical imaging of noble metal nanostructures," Nano Lett. 5, 615-619 (2005).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

H. Gao, J. Henzie and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Opt. Exp.

T. Grosjean and D. Courjon, "Photopolymers as vectorial sensors of the electric field," Opt. Exp. 14, 2203-2210 (2006).
[CrossRef]

Opt. Lett.

Opt. Mat.

P. Lefin, C. Fiorini and J.-M. Nunzi, "Anisotropy of the photoinduced translation diffusion of azo-dyes," Opt. Mat. 9, 323-328 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic cross-section of the plasmon interference printing system. The illumination of the silver nanostructures induced by the PMMA corrugation generates counter-propagating surface plasmons which interfere on the central metallic area. Then, the corresponding field is printed in the DR1MA/MMA layer through photo-induced mass transport.

Fig. 2.
Fig. 2.

Characteristics of the less attenuated plasmon eigenmode of the multilayer supporting the plasmon interference (central part of the plasmon interference printing system sketched in Fig. 1). Calculations have been done at a wavelength λ of 532 nm, corresponding to the DR1MA/MMA absorption peak. The plasmon-supporting stack is composed of a 3λ glass layer (substrate), a 150 nm PMMA layer, a silver film, a DR1MA/MMA film and a 3λ thick air layer. The plasmon modes characteristics are calculated as a function of the silver and the DR1MA/MMA films thicknesses. (a), plasmon wavelength. (b) and (c), plasmon propagation distance and decay length along, and perpendicular to, the silver-DR1MA/MMA interface respectively. All dimensions are given in nanometers and the shaded regions indicate the absence of a weak attenuated plasmon eigenmode in the system.

Fig. 3.
Fig. 3.

Interference field generated by two unidirectional gratings separated by 5.5 λsp. The incident light polarization is perpendicular to the lines. (a,b) : AFM image and profile of the structure after exposure. (c,d) : simulated map and profile taking into account the optical response of the polymer, V=-ExEx *+EzEz *. (e,f) : simulated map and profile of the transverse component of (c,d), -ExEx *. (g,h) : simulated map and profile of the longitudinal component of (c,d), EzEz *. (i, j) : simulated map and profile of the negative of the intensity, -ExEx *-EzEz *.

Fig. 4.
Fig. 4.

Experimental and simulated results obtained with two-dimensional gratings. (a, b): AFM top view images of the total structures before exposure. The corresponding incident light polarization direction used for the illumination is indicated by the white arrows. (c-f): AFM (top) and simulated (bottom) images of the printed interference fields. (c, e): studs generation through interference of four perpendicular waves. (d, f): ring patterning in the center of the circular grating. Both simulated images have been obtained by taking into account the presumed optical response of the photopolymer (Eq. 6).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ sp = λ Re ( n eff )
d x = λ 2 π Im ( n eff )
d z = λ 2 π Im ( n 2 n eff 2 )
H y ± = A ( z ) exp ( jk x ( ± x + D 2 ) )
H y = A 0 exp ( j 2 π λ nz )
V = E x E x * E y E y * + E z E z *

Metrics