Abstract

The propagation of a plasmon surface wave in deep metallic lamellar gratings is shown to be characterized by absorption losses smaller than on a flat metallic-dielectric interface. This feature is due to the formation of a resonance of the electric field inside the groove. Similar to the plasmon surface wave in shallow gratings, this kind of plasmon can lead to total absorption of incident light and to a significant enhancement of the local field density in the vicinity of the grating surface, contrary to the other type of grating anomaly linked with a cavity resonance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).
  2. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    [CrossRef]
  3. A. Hessel and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
    [CrossRef]
  4. D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
    [CrossRef]
  5. T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
    [CrossRef]
  6. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  7. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  8. P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
    [CrossRef] [PubMed]
  9. E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
    [CrossRef]
  10. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
    [CrossRef]
  11. F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
    [CrossRef]
  12. W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
    [CrossRef]
  13. R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002).
    [CrossRef]
  14. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole array," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  15. M. Nevière and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design, (Marcel Dekker, New York, 2003).
  16. Lord RayleighO. M. , "Note on the remarkable case of diffraction spectra described by Prof. Wood," Phil. Mag. 14, 60-65 (1907).
  17. See, for example, the review chapter by D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed., (John Wiley, 1982), Chap. 17.
  18. R. Reinisch, E. Popov, and M. Nevière, "Second harmonic generation induced optical bistability in prism or grating couplers," Opt. Lett. 20, 854-856 (1995).
    [CrossRef] [PubMed]
  19. B. S. Thornton, "Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design," J. Opt. Soc. Am. 65, 267-270 (1975).
    [CrossRef]
  20. R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Theory of crossed gratings," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, Berlin, 1980)
  21. E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
    [CrossRef] [PubMed]
  22. E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
    [CrossRef]
  23. See, for example, M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), Chap. 5.
  24. A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
    [CrossRef]
  25. E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
    [CrossRef]
  26. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  27. J. D. Jackson, Classical Electrodynamics (Wiley, 1998), sec. 8.5.

2006

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

2004

2003

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

2002

R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002).
[CrossRef]

2000

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

1999

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

1998

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

1995

1994

1990

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
[CrossRef]

1980

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

1975

1965

1941

1907

Lord RayleighO. M. , "Note on the remarkable case of diffraction spectra described by Prof. Wood," Phil. Mag. 14, 60-65 (1907).

1902

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Baudrion, A.-L.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Bozhevolnyi, S. I.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Bustarret, E.

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Dechelette, A.

Dereux, A.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Ebbesen, T.

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Enoch, S.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Fano, U.

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Fournier, T.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Genack, A. Z.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

Gersten, J. I.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

Ghaemis, H.

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Gramila, T. J.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

Harmsen, R. H.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Hessel, A.

Hibbins, P.

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

Hooper, I. R.

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

Hooper, R.

R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Kuipers, L.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Lalanne, P.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Lecamp, G.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Lezec, H.

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Lezec, H. J.

Lockyear, M. J.

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

López-Rios, T.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Lord Rayleigh,

Lord RayleighO. M. , "Note on the remarkable case of diffraction spectra described by Prof. Wood," Phil. Mag. 14, 60-65 (1907).

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Maystre, D.

E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
[CrossRef]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

R. Reinisch, E. Popov, and M. Nevière, "Second harmonic generation induced optical bistability in prism or grating couplers," Opt. Lett. 20, 854-856 (1995).
[CrossRef] [PubMed]

Oliner, A. A.

Pannetier, B.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Popov, E.

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

R. Reinisch, E. Popov, and M. Nevière, "Second harmonic generation induced optical bistability in prism or grating couplers," Opt. Lett. 20, 854-856 (1995).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
[CrossRef]

Prangsma, J. C.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Preist, T. W.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

Reinisch, R.

Reinish, R.

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Sambles, J. R.

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002).
[CrossRef]

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

Sánchez-Dehesa, J.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Sandtke, M.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Tan, W.-C.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole array," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Thornton, B. S.

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

van Nieuwstadt, A. H.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Wanstall, N. P.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Weber, J.-C.

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Weitz, D. A.

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Appl. Opt.

J. Lightwave Technol.

J. Mod. Opt.

E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

J. Opt. Soc. Am.

Nature

T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phil. Mag.

Lord RayleighO. M. , "Note on the remarkable case of diffraction spectra described by Prof. Wood," Phil. Mag. 14, 60-65 (1907).

Phylos. Mag.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Phys. Rev. B

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999).
[CrossRef]

R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002).
[CrossRef]

A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Phys. Rev. Lett.

A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980).
[CrossRef]

P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

Science

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other

M. Nevière and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design, (Marcel Dekker, New York, 2003).

See, for example, the review chapter by D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed., (John Wiley, 1982), Chap. 17.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998), sec. 8.5.

R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Theory of crossed gratings," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, Berlin, 1980)

See, for example, M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Schematic representation of lamellar grating with notations. One-dimensional (a) and 2-dimensional (b) geometry.

Fig. 2.
Fig. 2.

Total reflected energy as a function of the sinus α of the incident angle and the lamella width c (in μm) for several groove depth values h (labelled in nm). Period d = 0.5 μm, wavelength λ = 0.6328 μm.

Fig. 3.
Fig. 3.

Variation of the imaginary (a) and the real (b) part of the mode effective index as a function of the groove depth for two filling factors (i.e. lamella width c).

Fig. 4.
Fig. 4.

The same as in Fig. 2 but for h = 0.35 μm.

Fig. 5.
Fig. 5.

The mode effective index (normalized propagation constant) as a function of the groove depth for the secondary plasmon mode, existing for deeper grooves

Fig. 6.
Fig. 6.

Reflection by the lamellar grating as a function of the angle of incidence (in a) when either the first (h small and equal to 0.013 μm) or the second (h = 0.306 μm) type plasmon surface wave is excited . Lamella width c = 0.3 μm.

Fig. 7.
Fig. 7.

Dispersion curves (cyan lines with the triangle symbols to the right) together with the total reflected intensity (to the left) corresponding to the plasmon surface wave excitation for shallow grooves, c = 0.3 μm, h = 0.036 μm.

Fig. 8.
Fig. 8.

The same as in Fig. 7, but with deep grooves for several values of the groove depth and width. The last partition corresponds to a cavity resonance.

Fig. 9.
Fig. 9.

Poynting vector map close to the grating surface, corresponding to the first kind PSW, existing for shallow grooves with parameters corresponding to a total absorption of incident light (c = 0.3 μm, h = 0.036 μm, a = 0.24591). Poynting vector modulus represented by the color pallet and its direction by the black lines.

Fig. 10.
Fig. 10.

Same as in Fig. 9 but for the second kind of PSW existing for deep grooves with c = 0.3 μm, h = 0.34 μm , α = 0.24705, corresponding to the total absorption of incident light.

Fig. 11.
Fig. 11.

Same as in Fig. 9 but for the cavity resonance with groove parameters corresponding to high absorption of incident light, c = 0.195 μm, h = 0.306 μm, and α = 0.92389.

Fig. 12.
Fig. 12.

Poynting vector maps inside the shallow (a) and deep (b) grooves corresponding to the first and the second kind of PSW.

Fig. 13.
Fig. 13.

x- and y-components of the electric field normalized with respect to the incident wave amplitude for shallow (a) and deep (b) grooves.

Fig. 14.
Fig. 14.

The map of the x-component of the electric field inside the groove of a deep lamellar grating (a) with h = 0.644 μm, accompanied by a total absorption of the incident light, as observed in the angular dependence (b).

Fig. 15.
Fig. 15.

Poynting vector modulus (color pallet) and its vector lines for a grating with h = 0.4, c = 0.3 μm, λ = 0.675 μm and α = 0.258.

Fig. 16.
Fig. 16.

Diffraction efficiency in order 0 and –1 in grazing incidence. Wavelength 0.6328 μm, groove width c = 0.3 μm, and groove depth h = 0.294 μm.

Fig. 17.
Fig. 17.

Total reflected energy by a periodic array (d = 0.5 μm) of square finite-depth holes in an aluminum substrate with side-wall length c = 0.1 μm. Wavelength of 0.6328 μm, incident magnetic field vector parallel to the metallic surface, and the plane of incidence parallel to the hole walls.

Fig. 18.
Fig. 18.

Same as in Fig. 17, but for larger holes with side wall length c = 0.3 μm.

Fig. 19.
Fig. 19.

Same as in Figs. 17 and 18, but for c = 0.4 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = α p + m λ d

Metrics