Abstract

The surface integral equation (SIE) method is utilized to characterize plasmonic waveguide made of two parallel chains of silver nanowires with radius of 25nm fed by a V-shaped funnel at a working wavelength of 600nm. The efficiency of energy transport along the waveguide due to surface plasmonic coupling is investigated for different dimensions and shapes. The opening angle of the V-shaped funnel region for optimum light capturing is included in the investigation as well. A long plasmonic double-chain waveguide of length ∼3.3μm has been analyzed and optimized.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmonson smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  2. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
    [CrossRef] [PubMed]
  4. R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
    [CrossRef]
  5. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
    [CrossRef]
  6. S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
    [CrossRef]
  8. W. M. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13,4818-4827 (2005).
    [CrossRef] [PubMed]
  9. J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
    [CrossRef]
  10. P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
    [CrossRef]
  11. M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  12. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
    [CrossRef]
  13. S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain results for silver cylinders," Phys. Rev. B 68, 045415 (1-11) (2003).
    [CrossRef]
  14. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  15. D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E.D. Palik, ed., (Academic Press, New York, 1985).
  16. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (Wiley-IEEE Press, 1997).
    [CrossRef]
  17. T. K. Wu and L. L. Tsai, "Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders," IEEE Trans. Antennas Propagat. 25, 518-524 (1977).
    [CrossRef]
  18. Y. Chang and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. 25, 789-795 (1977).
    [CrossRef]
  19. H. S. Chu, W. B. Ewe, E. P. Li, H. P. Lee, and R. Thampuran, "Surface integral equation method to characterize the nanoplasmonic waveguides with funneling array," in Nanometa 2007 Conference Digest, Tirol, Austria, 8-11 Jan. 2007.

2006

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

2005

W. M. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13,4818-4827 (2005).
[CrossRef] [PubMed]

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

2002

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

2001

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

2000

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

1999

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

1998

1977

T. K. Wu and L. L. Tsai, "Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders," IEEE Trans. Antennas Propagat. 25, 518-524 (1977).
[CrossRef]

Y. Chang and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. 25, 789-795 (1977).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

Baudrion, A. L.

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

Berini, P.

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

Bozhevolnyi, S. I.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Brongersma, M.

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Chandran, A.

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

Chang, Y.

Y. Chang and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. 25, 789-795 (1977).
[CrossRef]

Charbonneau, R.

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

Dereux, A.

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

Erland, J.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

González, M. U.

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

Harrington, R.

Y. Chang and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. 25, 789-795 (1977).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Hvam, J. M.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Lahoud, N.

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Leosson, K.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Mattiussi, G.

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

Quinten, M.

Saj, W. M.

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

Schuller, J. A.

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

Skovgaard, P. M. W.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Tsai, L. L.

T. K. Wu and L. L. Tsai, "Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders," IEEE Trans. Antennas Propagat. 25, 518-524 (1977).
[CrossRef]

Weeber, J. C.

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

Wu, T. K.

T. K. Wu and L. L. Tsai, "Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders," IEEE Trans. Antennas Propagat. 25, 518-524 (1977).
[CrossRef]

Zhia, R.

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

Appl. Phys. Lett.

J. C.  Weeber, M. U.  González, A. L.  Baudrion, and A.  Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett.  87, 221101 (2005).
[CrossRef]

Europhys. Lett.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002)
[CrossRef]

IEEE Trans. Antennas Propagat.

T. K. Wu and L. L. Tsai, "Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders," IEEE Trans. Antennas Propagat. 25, 518-524 (1977).
[CrossRef]

Y. Chang and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. 25, 789-795 (1977).
[CrossRef]

J. Appl. Phys.

P.  Berini, R.  Charbonneau, N.  Lahoud, and G.  Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys.  98, 043109 (2005).
[CrossRef]

Materials Today

R. Zhia, J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061- 9068 (1999).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Phys. Rev. Lett.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M. W.  Skovgaard, and J. M.  Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett.  86, 3008-3011 (2001).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmonson smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain results for silver cylinders," Phys. Rev. B 68, 045415 (1-11) (2003).
[CrossRef]

D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E.D. Palik, ed., (Academic Press, New York, 1985).

A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (Wiley-IEEE Press, 1997).
[CrossRef]

H. S. Chu, W. B. Ewe, E. P. Li, H. P. Lee, and R. Thampuran, "Surface integral equation method to characterize the nanoplasmonic waveguides with funneling array," in Nanometa 2007 Conference Digest, Tirol, Austria, 8-11 Jan. 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Plasmonic waveguide using 130 cylindrical silver nanowires. The double-chain waveguide consists of two parts: the funnel-arm and the center-arm. The light source, located at the left, is used to excite the structure with a TEZ-mode.

Fig. 2.
Fig. 2.

H-field intensity in the double-chain region for different center-center separation of the AgNW in the funnel region with V-shaped aperture α = 90°. (a) Field distribution along the propagation direction in the double-chain region (AB) and (b) field distribution in the cross section of the waveguide just before the last cylinders in the double-chain (CD).

Fig. 3.
Fig. 3.

H-field intensity in the waveguide for different center-center separation of AgNW in the center-arm, with dfn = 2.6r and α = 90°. (a) Field distribution along the propagation direction in the double-chain region (AB) and (b) field distribution in the cross section of the waveguide just before the last cylinders in the double-chain (CD).

Fig. 4.
Fig. 4.

H-field intensity in the waveguide for different gaps, h, between the two parallel chains in the center-arm, with dfn = 2.6r, d = 2.2r and α = 90°. (a) Field distribution along the waveguide (AB) and (b) field distribution in the cross section of the waveguide just before the last cylinders in the double-chain (CD).

Fig. 5.
Fig. 5.

Normalized H-field intensity distribution in the waveguide for different wavelengths: (a): λ = 480 nm, (b): λ = 600 nm and (c): λ = 830 nm. The field-intensity is strong and well confined within the double-chain waveguide at λ = 600 nm.

Fig. 6.
Fig. 6.

Field intensity distribution in the center of the waveguide along the propagation direction (a) and transverse to it at the output of the waveguide (b) for different excitation wavelengths: λ = 470, 600 and 830 nm.

Fig. 7.
Fig. 7.

E-field intensity in the two parallel chains for d = 2.2r (center-center distance between 2 nanowires in the same row is 5 nm) and the gap h = 6r (distance between 2 rows is 100 nm); excitation wavelength λ = 600 nm.

Fig. 8.
Fig. 8.

Field intensity in the two parallel chains for d = 2.2r (center-center distance between 2 nanowires in the same row is 5 nm) and the gap h = 3r (distance between 2 rows is 25 nm); excitation wavelength λ = 600 nm.

Fig. 9.
Fig. 9.

H-field intensity in the waveguide for different V-shaped aperture, α, with dfn = 2.6r, d = 2.2r and h = 3r. (a) Field distribution along the waveguide (AB) and (b) field distribution in the cross section of the waveguide just before the last cylinders in the double-chain (CD).

Metrics