Abstract

High-quality amorphous Silicon Nitride (a-Si1-xNx:H) Fabry-Pérot microcavities can show resonant surface Second Harmonic Generation (SHG) effect. We consider two different layouts of planar microcavities with almost identical linear reflectance and show how the structure geometry can strongly affect SHG yield. In particular, a difference of more than one order of magnitude in the SHG intensity is observed when the fundamental beam is tuned at the cavity resonance frequency. We explain this finding on the basis of a theoretical model taking into account the spatial distribution of the electric fields of the pump and harmonic frequencies inside the structure. A satisfactory matching of experimental data with the theoretical model is obtained by considering the source of second-order nonlinearity as limited to surface contributions.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals

Tatyana V. Dolgova, Anton I. Maidykovski, Michail G. Martemyanov, Andrey A. Fedyanin, Oleg A. Aktsipetrov, Gerd Marowsky, Vladimir A. Yakovlev, Giorgio Mattei, Narumi Ohta, and Seiichiro Nakabayashi
J. Opt. Soc. Am. B 19(9) 2129-2140 (2002)

Microcavity enhanced second harmonic generation in 2D MoS2

Jared K. Day, Meng-Hsi Chung, Yi-Hsien Lee, and Vinod M. Menon
Opt. Mater. Express 6(7) 2360-2365 (2016)

Efficient second harmonic generation in gold–silicon core–shell nanostructures

Zhong-Jian Yang, Qian Zhao, Yan-Hui Deng, Dou Zhang, and Jun He
Opt. Express 26(5) 5835-5844 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Giorgis, “Optical microcavities based on amorphous Silicon Nitride Fabry-Pérot structures,” Appl. Phys. Lett. 77,522 (2000).
    [Crossref]
  2. F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
    [Crossref]
  3. S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
    [Crossref]
  4. W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
    [Crossref]
  5. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
    [Crossref]
  6. S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
    [Crossref]
  7. S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
    [Crossref]
  8. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13,5553 (2005).
    [Crossref] [PubMed]
  9. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40,5860 (2001).
    [Crossref]
  10. R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29,1971 (2004).
    [Crossref] [PubMed]
  11. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6,910 (1989).
    [Crossref]
  12. S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
    [Crossref]
  13. The sign of χ(2)∥∥⊥,i , at each interface is determined by considering the sequence of refractive index of the two corresponding neighboring layers.
  14. I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
    [Crossref]
  15. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Generalized coupled-mode theory for χ(2) interactions in finite multilayered structures,” J. Opt. Soc. Am. B 19,2111 (2002).
    [Crossref]
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12,1068 (1995).
    [Crossref]

2007 (1)

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

2006 (3)

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

2005 (2)

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13,5553 (2005).
[Crossref] [PubMed]

2004 (2)

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29,1971 (2004).
[Crossref] [PubMed]

2003 (1)

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

2002 (2)

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Generalized coupled-mode theory for χ(2) interactions in finite multilayered structures,” J. Opt. Soc. Am. B 19,2111 (2002).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

2001 (1)

2000 (1)

F. Giorgis, “Optical microcavities based on amorphous Silicon Nitride Fabry-Pérot structures,” Appl. Phys. Lett. 77,522 (2000).
[Crossref]

1995 (1)

1989 (1)

Aarts, I. M. P.

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

Andreani, L. C.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

Aubert, S.

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13,5553 (2005).
[Crossref] [PubMed]

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

Bachelot, R.

Ballarini, V.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

Barchiesi, D.

Bertolotti, M.

Bethune, D. S.

Blaize, S.

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13,5553 (2005).
[Crossref] [PubMed]

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

Bloemer, M. J.

Bowden, C. M.

Bruno, G.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

Bruyant, A.

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13,5553 (2005).
[Crossref] [PubMed]

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

Centini, M.

D’Aguanno, G.

Deloeil, D.

Di Finizio, S.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

Ecoffet, C.

Fares, A.

Fikri, R.

Galli, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

Gaylord, T. K.

Gesuele, F.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

Gielis, J. J. H

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

Gielis, J. J. H.

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

Giorgis, F.

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

F. Giorgis, “Optical microcavities based on amorphous Silicon Nitride Fabry-Pérot structures,” Appl. Phys. Lett. 77,522 (2000).
[Crossref]

Grann, E. B.

Hudlet, S.

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

Kessels, W. M. M.

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

Leewis, C. M.

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

Lerondel, G.

Lettieri, S.

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

Liscidini, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

Losurdo, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

Lougnot, D.-J.

Maddalena, P.

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

Merola, F.

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

Moharam, M. G.

Pommet, D. A.

Ricciardi, C.

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

Royer, P.

Scalora, M.

Sibilia, C.

Stefanon, I.

van de Sanden, M. C. M.

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

F. Giorgis, “Optical microcavities based on amorphous Silicon Nitride Fabry-Pérot structures,” Appl. Phys. Lett. 77,522 (2000).
[Crossref]

S. Lettieri, F. Merola, P. Maddalena, C. Ricciardi, and F. Giorgis, “Second Harmonic Generation analysis in hydrogenated amorpohous Silicon Nitride thin films,” Appl. Phys. Lett. 90,21919 (2007).
[Crossref]

W. M. M. Kessels, J. J. H Gielis, I. M. P. Aarts, C. M. Leewis, and M. C. M. van de Sanden, “Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films,” Appl. Phys. Lett. 85,4049 (2004).
[Crossref]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in amorphous Silicon Nitride microcavities,” Appl. Phys. Lett. 81,4706 (2002).
[Crossref]

S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-Harmonic Generation in hydrogenated amorphous-Si1-xNx doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87,191110 (2005).
[Crossref]

J. Lumin. (1)

F. Gesuele, S. Lettieri, P. Maddalena, C. Ricciardi, V. Ballarini, and F. Giorgis, “Optical harmonic generation in amorphous Silicon Nitride microcavities,” J. Lumin. 121,274 (2006).
[Crossref]

J. Non Cryst. Solid (1)

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures,” J. Non Cryst. Solid 352,1294 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am.B (1)

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interfero-metric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am.B 20,2117(2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

I. M. P. Aarts, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation,” Phys. Rev. B 73,045327 (2006).
[Crossref]

Other (1)

The sign of χ(2)∥∥⊥,i , at each interface is determined by considering the sequence of refractive index of the two corresponding neighboring layers.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. One dimensional refractive index profile n(z) of the two cavity configurations: (a) μC(A), (b) μC(B).
Fig. 2.
Fig. 2. Measured reflectance of μC(A) (gray squares) and μC(B) (black circles). Illuminating light is P-polarized and incident at θ = 40°.
Fig. 3.
Fig. 3. Measured reflected SH spectra referred to μC(A) (gray squares) and μC(B) (black circles). Calculated spectra: μC(A) (black solid line) and μC(B) (gray dashed line). Pump beam is P-polarized and incident at θ = 40°.
Fig. 4.
Fig. 4. Measured reflected SH spectra referred to μC(A) (gray squares) and μC(B) (black circles). Calculated spectra: μC(A) (black solid line) and μC(B) (gray dashed line). Pump beam is S-polarized and incident at θ = 40°.
Fig. 5.
Fig. 5. Schematic of the apertureless SNOM setup employed for near-field mapping of μC(B).
Fig. 6.
Fig. 6. (a). Measured intensity near-field distribution in μC(B) at resonance wavelength. 1D plot of the measured (b) and calculated (c) field intensity distribution in the z-direction. Measured intensity profile is obtained by averaging the collected field distribution over the dashed region.
Fig. 7.
Fig. 7. (a). Measured off-resonance intensity near-field distribution in μC(B). 1D plot of the measured (b) and calculated (c) field intensity distribution in the z-direction. Measured intensity profile is obtained by averaging the collected field distribution over the dashed region.
Fig. 8.
Fig. 8. Calculated intensity distribution of the electric fields E ω (a) and E2ω (b) inside ,μC(A).
Fig. 9.
Fig. 9. Calculated intensity distribution of the electric fields E ω (a) and E2ω (b) inside μC(B).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ eff ( 2 ) = χ bulk ( 2 ) ( z ) E ω 2 ( z ) E 2 ω ( z ) dz
χ interf ( 2 ) ( z ) = i = 1 N χ ∥∥⊥ , i ( 2 ) δ ( z z i )
χ eff ( 2 ) = χ interf ( 2 ) ( z ) E ω 2 ( z ) E 2 ω ( z ) dz = i = 1 N χ ∥∥⊥ , i ( 2 ) E ω 2 ( z i ) E 2 ω ( z i )
η calc S = χ eff ( 2 ) 2 μC ( B ) χ eff ( 2 ) 2 μC ( A )

Metrics