Abstract

Differences in light scattering properties of a tumorigenic and a non-tumorigenic model for tissue were demonstrated using a variety of light scattering techniques, the majority of which are in vivo compatible. In addition to determining that light scattering differences exist, models for the microarchitectural changes responsible for the light scattering differences were developed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).
  2. B.F. Hochheimer, “Polarized light retinal photography of a monkey eye,” Vision Res,” 18,19–23 (1978).
    [CrossRef] [PubMed]
  3. A.H. Hielscher, J.R. Mourant, and I.J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36,125–135(1997).
    [CrossRef] [PubMed]
  4. A. I. Carswell and S. R. Pal, “Polarization anisotropy in lidar multiple scattering from clouds,” Appl. Opt. 19,4123–4126 (1980).
    [CrossRef] [PubMed]
  5. M. Dogairu and T. Asakaru, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris), 24,271–278 (1993).
    [CrossRef]
  6. M. J. Rakovic and G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37,3333–3338 (1998).
    [CrossRef]
  7. T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 6,200–216 (1999).
    [CrossRef]
  8. M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).
  9. K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
    [CrossRef] [PubMed]
  10. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
    [CrossRef]
  11. J.R. Mourant, T, M. Johnson, and J.P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40,5114–5123 (2001).
    [CrossRef]
  12. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
    [CrossRef] [PubMed]
  13. L. Nieman, A. Myakov, J. Aaron, and K. Soklov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43,1308 –1319 (2004).
    [CrossRef] [PubMed]
  14. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
    [CrossRef] [PubMed]
  15. J. D. Wilson and T.M. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30,2442–2444 (2005).
    [CrossRef] [PubMed]
  16. M. Bartlett, G. Huang, L. Larcom, and H. Jiang, “Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy,” Appl. Opt. 43,1296–1307 (2004).
    [CrossRef] [PubMed]
  17. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21,1310–1312 (1996).
    [CrossRef] [PubMed]
  18. D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
    [CrossRef]
  19. B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
    [CrossRef]
  20. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30,3051–3053 (2005).
    [CrossRef] [PubMed]
  21. H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
    [CrossRef]
  22. L. Wang and S.L. Jacques, “Use of a laser beam with oblique angle to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34,2362–2366 (1995).
    [CrossRef] [PubMed]
  23. J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
    [CrossRef]
  24. J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
    [CrossRef] [PubMed]
  25. J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
    [CrossRef]
  26. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).
  27. M. I. Mischenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quantum Spectrosc. Radiat. Transf. 60,309324 (1998).
  28. J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.
  29. R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
    [CrossRef] [PubMed]
  30. A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
    [PubMed]
  31. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
    [CrossRef]

2005 (4)

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

J. D. Wilson and T.M. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30,2442–2444 (2005).
[CrossRef] [PubMed]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30,3051–3053 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (4)

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

2002 (2)

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

1999 (3)

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 6,200–216 (1999).
[CrossRef]

1998 (4)

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

M. I. Mischenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quantum Spectrosc. Radiat. Transf. 60,309324 (1998).

M. J. Rakovic and G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37,3333–3338 (1998).
[CrossRef]

1997 (1)

1996 (3)

J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21,1310–1312 (1996).
[CrossRef] [PubMed]

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

1995 (2)

L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).

L. Wang and S.L. Jacques, “Use of a laser beam with oblique angle to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34,2362–2366 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Dogairu and T. Asakaru, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris), 24,271–278 (1993).
[CrossRef]

1980 (1)

1978 (1)

B.F. Hochheimer, “Polarized light retinal photography of a monkey eye,” Vision Res,” 18,19–23 (1978).
[CrossRef] [PubMed]

Aaron, J.

Alfano, R. R.

Asakaru, T.

M. Dogairu and T. Asakaru, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris), 24,271–278 (1993).
[CrossRef]

Avriller, S.

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

Backman, V.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Bartlett, M.

Bigio, I. J.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Bigio, I.J.

Biodo, I.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Bocklage, T.J.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Boone, C. W.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Broker, C.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Bullock, K. L.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Canpolat, M.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Carpenter, S.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

Carswell, A. I.

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Cipolloni, P.B.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Coburn, L.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

Collier, T.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Dasari, R.R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Dogairu, M.

M. Dogairu and T. Asakaru, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris), 24,271–278 (1993).
[CrossRef]

Dorin, M. H.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Drezek, R.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

Eick, A. A.

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

Eick, A.A.

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

Esponda-Ramos, O.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Fang, H.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Feld, M. S.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Feld, M.S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Follen, M.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Foster, T.M.

Freedman, S. D.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Freyer, J. P.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

Freyer, J.P.

J.R. Mourant, T, M. Johnson, and J.P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40,5114–5123 (2001).
[CrossRef]

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

Gelebart, B.

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Gossagee, K.

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

Greene, H. M.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

Guerra, R.

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

Guillard, M.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Hanlon, E. B.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Hebden, J.C.

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

Hielscher, A. H.

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

Hielscher, A.H.

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

A.H. Hielscher, J.R. Mourant, and I.J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36,125–135(1997).
[CrossRef] [PubMed]

Hochheimer, B.F.

B.F. Hochheimer, “Polarized light retinal photography of a monkey eye,” Vision Res,” 18,19–23 (1978).
[CrossRef] [PubMed]

Huang, G.

Itzkan, I.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Jacques, S. L.

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

Jacques, S.L.

Jiang, H.

Johnson, T, M.

Johnson, T.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 6,200–216 (1999).
[CrossRef]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

Johnson, T.M.

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

Kattawar, G. W.

Kim, Y. L.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Kimerer, L.M.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Kumar, G.

Kunapareddy, P.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

Kunz-Schughart, L. A.

L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).

Larcom, L.

Liu, Y.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Macaulay, C.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

Marr-Lyon, L. R.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Matanock, A.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Mischenko, M. I.

M. I. Mischenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quantum Spectrosc. Radiat. Transf. 60,309324 (1998).

Mourant, J. R.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 6,200–216 (1999).
[CrossRef]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Mourant, J.R.

J.R. Mourant, T, M. Johnson, and J.P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40,5114–5123 (2001).
[CrossRef]

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

A.H. Hielscher, J.R. Mourant, and I.J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36,125–135(1997).
[CrossRef] [PubMed]

Mueller-Klieser, W.

L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).

Müller, M. G.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Myakov, A.

L. Nieman, A. Myakov, J. Aaron, and K. Soklov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43,1308 –1319 (2004).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

Nieman, L.

L. Nieman, A. Myakov, J. Aaron, and K. Soklov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43,1308 –1319 (2004).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

Nines, R.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Ollero, M.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Ostermeyer, M. R.

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

Pal, S. R.

Passos, D.

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

Perelman, L. T.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Perelman, L.T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

Pinto, P.N.

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

Powers, T. M.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Rakovic, M. J.

Richards-Kortum, R.

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

Roy, H. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Schmitt, J. M.

Shen, D.

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

Short, K. W.

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

Simm, A.

L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).

Smith, H. O.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Soklov, K.

Sokolov, K.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

Steele, V. E.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Stephens, D. V.

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

Stetter, K.

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

Stoner, G. D.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Tinet, E.

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

Travis, L. D.

M. I. Mischenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quantum Spectrosc. Radiat. Transf. 60,309324 (1998).

Tualle, J. M.

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

Utzinger, U.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

Vitkin, E.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Wali, R. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

Wang, L.

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

L. Wang and S.L. Jacques, “Use of a laser beam with oblique angle to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34,2362–2366 (1995).
[CrossRef] [PubMed]

Wax, A.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Waxman, A. G.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Wicky, L.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

Wilson, J. D.

Xu, M.

Yang, C.

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

Zaman, M. N.

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

Zsemlye, M. M.

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Appl Opt. (1)

J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl Opt. 37,3586–3593 (1998).
[CrossRef]

Appl. Opt. (7)

Cancer Cytopath. (1)

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigienic and nontumorigenic cells,” Cancer Cytopath. 84,366–374 (1998).

Cancer Research (1)

A. Wax, C. Yang, M. G. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved log coherence interferometry,” Cancer Research, 63,3556–3559 (2003).
[PubMed]

IEEE J. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5,1019–1026(1999).
[CrossRef]

IEEE J. Qunatum Electron. (1)

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Qunatum Electron. 9,243–256 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M. N. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 9,267–276 (2003).
[CrossRef]

in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics (1)

M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques “Nearfiled polarization effects on light propagation in random media,” in: OSA TOPS on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, Eds., Vol. 3. pp.20–25 (1996).

J. Biomed. Opt. (6)

D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10,064036-1—11, (2005).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7,378–387 (2002).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectrocopy in vivo : Design and performance,” J. Biomed. Opt. 7,388–397 (2002).
[CrossRef] [PubMed]

J.R. Mourant, M. Canpolat, C. Broker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, and J.P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5,131–137 (2000).
[CrossRef] [PubMed]

J. R. Mourant, S. Carpenter, K. W. Short, P. Kunapareddy, L. Coburn, and J. P. Freyer “Biochemical differences in tumorigenic and non-tumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10,031106-1 to031106-15 (2005).
[CrossRef]

R. Drezek, M. Guillard, T. Collier, I. Biodo, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8,7–16 (2003).
[CrossRef] [PubMed]

J. Opt. (Paris) (1)

M. Dogairu and T. Asakaru, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris), 24,271–278 (1993).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transf. (1)

M. I. Mischenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quantum Spectrosc. Radiat. Transf. 60,309324 (1998).

Oncol. Rep. (1)

L. A. Kunz-Schughart, A. Simm, and W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphologic and metabolic alterations,” Oncol. Rep. 2,651–661(1995).

Opt Express (1)

K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light : Is it sensitive to cellular and nuclear morphology,” Opt Express 5,302–317 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 6,200–216 (1999).
[CrossRef]

Opt. Lett. (3)

Pure Appl. Opt. (1)

B. Gelebart, E. Tinet, J. M. Tualle, and S. Avriller, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5,377–388 (1996).
[CrossRef]

Vision Res (1)

B.F. Hochheimer, “Polarized light retinal photography of a monkey eye,” Vision Res,” 18,19–23 (1978).
[CrossRef] [PubMed]

Other (1)

J. R. Mourant, T.J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” accepted Gynecological Oncology 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of the imaging system.

Fig. 2.
Fig. 2.

Schematic of the fiber optic system. a) Components of the fiber-optic system. b) Schematic of the distal end of the probe. There is a polarizer on the top left, covering delivery fiber P and collection fibers 1 and 4 that polarizes the light horizontally. A polarizer on the bottom left, covering only fiber 3, polarizes the light vertically. There is no polarizer over delivery fiber U and collection fiber 2.

Fig. 3.
Fig. 3.

An image of the log of the light scattering intensity of plateau phase Rat1 cells used for calculating the reduced scattering coefficient. The peripheral circle used for calculating the reduced scattering coefficient is shown in black. Contours of log intensity are in white. The point of laser incidence is defined as (0,0).

Fig. 4.
Fig. 4.

Schematic of the angular dependent light scattering system.

Fig. 5.
Fig. 5.

Images of log intensity from the tumorigenic model (Rat1-T1 cells harvested in the exponential phase of growth). a) crossed polarizers, log(I). b) parallel polarizers, log(I). The polarizaton of the excitation light is vertical in these images.

Fig. 6.
Fig. 6.

Images of log(I/I). a) Non-tumorigenic model (Rat1 cells harvested in the plateau phase of growth). b) Tumorigenic model (Rat1-T1 cells harvested in the exponential phase of growth.) The scale is the same in panels a and b. c) The image in a) subtracted from the image in b).

Fig. 7.
Fig. 7.

Values along horizontal and vertical lines through images of log(I/I) for the tumorigenic model (exponential Rat1-T1 cells) (red) and non-tumorigenic model (plateau Rat1 cells) (blue). Averages along with the standard deviations of multiple measurements are shown.

Fig. 8.
Fig. 8.

a) The value of I1/I3 determined from fiber optic probe measurements of Rat1-T1 cells harvested in the exponential phase of growth (red) and Rat1 cells harvested in the plateau phase of growth (blue). b) Same as a) but for I1/I4.

Fig. 9.
Fig. 9.

Unpolarized light scattering.

Fig. 10.
Fig. 10.

Reduced scattering coefficients.

Fig. 11.
Fig. 11.

Angularly resolved light scattering measurements. a) polarizers perpendicular to the scattering plane. b) polarizers parallel to the scattering plane. The data have been normalized to have the same intensity from 30° – 50°.

Fig. 12.
Fig. 12.

Differences in simulation and experimental results for the tumorigenic model minus the non-tumorigenic model. The error bars are standard deviations of either multiple experiments or multiple simulations. a) Difference in log(I/I). b) Differences in the slope of the unpolarized data determined by a straight line fit to the data from 500 – 800 nm. c) and d) Differences in I1/I3 and I1/I4.

Fig. 13.
Fig. 13.

Simulation of angularly resolved light scattering measurements. a) polarizers perpendicular to the scattering plane. b) polarizers parallel to the scattering plane. See the caption of Fig. 12 for the definition of Simulation 2.

Tables (2)

Tables Icon

Table 1. Model of the size and refractive indices of scattering structures.

Tables Icon

Table 2. Light scattering differences. Rat1-T1e means exponential phase Rat1-T1 cells and Rat1p means plateau phase Rat1 cells. All results are at a t-test significance level of 0.05 or better. For the log(I/I a t-test a significant results means that a point along the horizontal or vertical line had a significantly different value.

Metrics