Abstract

Diffuse optical tomography (DOT) has much lower sensitivity in deep tissues than in superficial tissues, which leads to poor depth resolution. In this paper, a layer-based sigmoid adjustment (LSA) method is proposed for reducing sensitivity contrast in the depth dimension. Using this method, differences in image quality between layers can be effectively reduced. As a result, positioning errors of less than 3 mm can be obtained in the depth dimension for all depths from -1 cm to -3 cm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jobsis, "Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory Parameters," Science 198, 1264-1267 (1977).
    [CrossRef] [PubMed]
  2. M. A. Franceschini, V. Toronov, M. E. Filiaci, and E. Gratton, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000).
    [CrossRef] [PubMed]
  3. S. Fantini, M. A. Fanceschini, and E. Gratton, "Non-invasive optical mapping of the piglet brain in real time," Opt. Express 4, 308-314 (1999).
    [CrossRef] [PubMed]
  4. G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
    [CrossRef] [PubMed]
  5. V. Ntziachristos, and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001).
    [CrossRef] [PubMed]
  6. A. M. Siegel, J. J. A. Marota, and D. A. Boas, "Design and evaluation of a continuous-wave diffuse optical tomography system," Opt. Express 4, 287-298 (1999).
    [CrossRef] [PubMed]
  7. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
    [PubMed]
  8. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
    [CrossRef] [PubMed]
  9. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
    [CrossRef] [PubMed]
  10. D. A. Boas, J. P. Culver, J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult head," Opt. Express 10, 159-170 (2002).
    [PubMed]
  11. E. Okada, and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
    [CrossRef] [PubMed]
  12. E. Okada, and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2915-2922 (2003).
    [CrossRef] [PubMed]
  13. D. A. Boas, and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005)
    [CrossRef] [PubMed]
  14. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  15. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
    [CrossRef] [PubMed]
  16. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
    [CrossRef] [PubMed]
  17. B. W. Pogue, and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998).
    [CrossRef]
  18. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999).
    [CrossRef]
  19. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
    [CrossRef] [PubMed]
  20. Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
    [CrossRef] [PubMed]
  21. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
    [CrossRef]
  22. X. Cheng, and D. A. Boas, "Diffuse optical reflectance tomography with continuous-wave illumination," Opt. Express 3, 118-123 (1998).
    [CrossRef] [PubMed]
  23. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
    [CrossRef]
  24. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
    [CrossRef] [PubMed]
  25. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
    [CrossRef]
  26. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
    [CrossRef]
  27. L. Wu, "A parameter choice method for Tikhonov regularization," Electron. Trans. Numer. Anal. 16, 107-128 (2003).
  28. P. C. Hansen, and D. O’Leary, "The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems," SIAM J. Sci. Comput. 14, 1487-1503 (1993).
    [CrossRef]
  29. X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, and H. Dehghani, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004).
    [CrossRef] [PubMed]

2006

Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
[CrossRef] [PubMed]

2005

2004

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, and H. Dehghani, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004).
[CrossRef] [PubMed]

2003

2002

D. A. Boas, J. P. Culver, J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult head," Opt. Express 10, 159-170 (2002).
[PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

2001

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

2000

M. A. Franceschini, V. Toronov, M. E. Filiaci, and E. Gratton, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000).
[CrossRef] [PubMed]

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

1999

1998

1993

P. C. Hansen, and D. O’Leary, "The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems," SIAM J. Sci. Comput. 14, 1487-1503 (1993).
[CrossRef]

1988

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

1977

F. Jobsis, "Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory Parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Abdoulaev, G.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

Barbour, R.

Bays, R.

Benaron, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

Bluestone, A.

Boas, D. A.

D. A. Boas, and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005)
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult head," Opt. Express 10, 159-170 (2002).
[PubMed]

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

A. M. Siegel, J. J. A. Marota, and D. A. Boas, "Design and evaluation of a continuous-wave diffuse optical tomography system," Opt. Express 4, 287-298 (1999).
[CrossRef] [PubMed]

X. Cheng, and D. A. Boas, "Diffuse optical reflectance tomography with continuous-wave illumination," Opt. Express 3, 118-123 (1998).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

Cheng, X.

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Culver, J. P.

Dale, A. M.

D. A. Boas, and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005)
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

Dehghani, H.

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, and H. Dehghani, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

Delpy, D. T.

E. Okada, and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

E. Okada, and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Dognitz, N.

Doyley, M. M.

Dunn, A. K.

Fanceschini, M. A.

Fantini, S.

Filiaci, M. E.

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

M. A. Franceschini, V. Toronov, M. E. Filiaci, and E. Gratton, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000).
[CrossRef] [PubMed]

Fujiwara, M.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Gratton, E.

Hansen, P. C.

P. C. Hansen, and D. O’Leary, "The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems," SIAM J. Sci. Comput. 14, 1487-1503 (1993).
[CrossRef]

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

Hielscher, A.

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

Hintz, S. R.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

Ji, L.

Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
[CrossRef] [PubMed]

Jiang, S.

Jiang, T. Z.

Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
[CrossRef] [PubMed]

Jobsis, F.

F. Jobsis, "Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory Parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Kienle, A.

Kohl-Bareis, M.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Koizumi, H.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Konishi, Y.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Maki, A.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Malak, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

Marota, J. J. A.

McBride, T. O.

Ntziachristos, V.

V. Ntziachristos, and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

O’Leary, D.

P. C. Hansen, and D. O’Leary, "The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems," SIAM J. Sci. Comput. 14, 1487-1503 (1993).
[CrossRef]

Obrig, H.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

Okada, E.

Osterberg, U. L.

Patterson, M. S.

Paulsen, K. D.

Pogue, B. W.

Prewitt, J.

Rinneberg, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

Schmitz, C.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

Siegel, A. M.

Song, X.

Steinbrink, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

Stevenson, D. K.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

Stott, J.

Stott, J. J.

Tachibana, T.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Taga, G.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Toronov, V.

Uludag, K.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

van den Bergh, H.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Villringer, A.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

Wagnieres, G.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Wu, L.

L. Wu, "A parameter choice method for Tikhonov regularization," Electron. Trans. Numer. Anal. 16, 107-128 (2003).

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
[CrossRef] [PubMed]

Zourabian, A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

Appl. Opt.

Breast Cancer Res.

V. Ntziachristos, and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001).
[CrossRef] [PubMed]

Electron. Trans. Numer. Anal.

L. Wu, "A parameter choice method for Tikhonov regularization," Electron. Trans. Numer. Anal. 16, 107-128 (2003).

Inverse Probl. Eng.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

J. Biomed. Opt.

Q. Zhao, L. Ji, and T. Z. Jiang, "Improving performance of reflectance diffuse optical imaging using a multicentered mode," J. Biomed. Opt. 11, (2006) (in press).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002).
[CrossRef] [PubMed]

J. Perinat. Med.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001).
[PubMed]

NeuroImage

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, 275-288 (2004).
[CrossRef]

Neurosci. Lett.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, and H. Koizumi, "Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography," Neurosci. Lett. 282, 101-104 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

Science

F. Jobsis, "Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory Parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

SIAM J. Sci. Comput.

P. C. Hansen, and D. O’Leary, "The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems," SIAM J. Sci. Comput. 14, 1487-1503 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The multicentered geometry used in this paper. The sources and detectors are indicated by dots and open circles, respectively. The imaging region is indicated by the block.

Fig. 2.
Fig. 2.

The overall sensitivity (a) within the x-y slice with z = -2.0 cm , and (c) within the x-z slice with y = 0 cm . The profiles (b) with y = 0 cm in the x-y slice and (d) with x = 0 cm in the x-z slice are shown in the first column. The corresponding (e) x-y slice and (g) x-z slice, together with the corresponding profiles in the (f) x-y slice and (h) x-z slice after adjustment with LSA parameter of 400.0 are shown in the second column.

Fig. 3.
Fig. 3.

The plots of the sigmoid function with LSA parameters of 200 and 400. β was sampled equally from -3.0 to 5.5, and the corresponding γ was calculated and used as the LSA coefficients.

Fig. 4.
Fig. 4.

The CNR maps for the LSA methods with (a) λb = λ max, (b) λb = λ max, and (c) λb = λ ˜ max . The CNR maps for the SVR methods with (d) λc = λs max, (e) λc = λ max, and (f) λc = λ ˜ max.

Fig. 5.
Fig. 5.

The quotients obtained by dividing standard deviations of CNR values over all depths by the corresponding mean values for (a) the LSA method and (b) the SVR method. The red lines are for {λb , λc } = λs max. The blue lines are for {λb , λc } = λ max. The black lines are for {λb , λc } = λ ˜ max.

Fig. 6.
Fig. 6.

The (a) real images, reconstructed images (b) without and (c) with applying the LSA method, and (d) with the SVR method. The objects were located at depths of -1.0 cm, -1.3 cm, -1.6 cm, -1.9 cm, -2.1 cm, -2.4 cm, -2.7 cm and -3.0 cm (from top to bottom).

Tables (1)

Tables Icon

Table 1. The CNR and PE values for the reconstructed images shown in Fig. 6.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ O D = ln ( Φ pert Φ 0 ) = Δ μ a ( r ) L ( r ) d r .
γ = a a 1 1 + e β , β [ 3.0 5.5 ] .
A ˜ = A D , D = [ γ ( β 1 ) γ ( β 1 ) ⋯⋯ γ ( β L ) γ ( β L ) ] ,
x ̂ = A T ( A A T + λ a I ) 1 y ,
x ̂ = A ˜ T ( A ˜ A ˜ T + λ b I ) 1 y ,
x ̂ = ( A T A + λ c D 2 ) 1 A T y .
x ̂ = D A T ( A D 2 A T + λ b I ) 1 y .
x ̂ = D ( D A T AD + λ c I ) 1 D A T y .
x ̂ = D D A T ( A D 2 A T + λ c I ) 1 y ,
λ b , λ c = { λ s max , λ s ˜ max , λ ˜ s ˜ max } .
C N R = μ ROI μ ROB [ w ROI σ ROI 2 + w ROB σ ROB 2 ] 1 2 ,

Metrics