Abstract

We report the design and implementation of spectroscopic and multicolor imaging capabilities into a fibered confocal fluorescence microscope (FCFM) already capable of in vivo imaging. The real time imaging device and the high resolution fiber probe make this system the first reported capable of performing multi color detection in the field of FCFM. The advantages of the system will allow in vivo morphological and functional imaging. Preliminary experiments were carried out in tissue samples to demonstrate the potential of the technique. The quality of the axial sectioning achieved in the confocal fluorescence spectroscopy mode is demonstrated experimentally, and applications to multicolor imaging are shown.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
    [CrossRef] [PubMed]
  2. A.R. Rouse, A. Kano, J.A. Udovich, S.M. Kroto, and A.F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43,5763–5771 (2004).
    [CrossRef] [PubMed]
  3. K. Carlson, M. Chidley, K.B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44,1792–1797 (2005).
    [CrossRef] [PubMed]
  4. P.M. Lane, A. Dlugan, R. Richards-Kortum, and C.E. MacCaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25,1780–1782 (2000).
    [CrossRef]
  5. T.D. Wang, M.J. Mandella, C.H. Contag, and G.S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28,414–416 (2003).
    [CrossRef] [PubMed]
  6. P.M. Delaney, M.R. Harris, and R.G. King, “Fibre-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33,573–577 (1994).
    [CrossRef] [PubMed]
  7. D.L. Dickensheets and G.S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21,764–766 (1996).
    [CrossRef] [PubMed]
  8. H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
    [CrossRef]
  9. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
    [PubMed]
  10. A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.
  11. A.R. Rouse and A.F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25,1708–1710 (2000).
    [CrossRef]
  12. G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
    [CrossRef]
  13. P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
    [CrossRef] [PubMed]
  14. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

2007 (1)

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

2006 (1)

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

2005 (1)

2004 (4)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

A.R. Rouse, A. Kano, J.A. Udovich, S.M. Kroto, and A.F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43,5763–5771 (2004).
[CrossRef] [PubMed]

H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
[CrossRef]

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

2003 (2)

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

T.D. Wang, M.J. Mandella, C.H. Contag, and G.S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28,414–416 (2003).
[CrossRef] [PubMed]

2000 (2)

1996 (1)

1994 (1)

Aaron, J.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Abrat, B.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

Adler-Storthz, K.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Arap, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Ayache, N.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

Berier, F.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Bourgeais, L.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Bourg-Heckly, G.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Carlson, K.

Cave, C.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

Changeux, J-P.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Charvet, I.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Chidley, M.

Contag, C.H.

Delaney, P.M.

Descour, M.

K. Carlson, M. Chidley, K.B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44,1792–1797 (2005).
[CrossRef] [PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Dickensheets, D.L.

Dlugan, A.

Follen, M.

K. Carlson, M. Chidley, K.B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44,1792–1797 (2005).
[CrossRef] [PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Gargasson, J.F. Le

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

Genet, M.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Gillenwater, A.

K. Carlson, M. Chidley, K.B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44,1792–1797 (2005).
[CrossRef] [PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Gmitro, A.F.

Goualher, G. Le

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Harris, M.R.

Hsu, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Kano, A.

Katashiro, M.

H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
[CrossRef]

King, R.G.

Kino, G.S.

Korgel, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Kroto, S.M.

Laemmel, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

Lam, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Lambert, R.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Lane, P.M.

Leresche, N.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

MacAulay, C.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

MacCaulay, C.E.

Mandella, M.J.

Meda, P.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Miyajima, H.

H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
[CrossRef]

Moreno-Swirc, S.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Murakami, K.

H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
[CrossRef]

Nida, D.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Pasqualini, R.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Paupardin-Tritsch, D.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Peltier, E.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Perchant, A.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Richards-Kortum, R.

Rouse, A.R.

Sokolov, K.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Stoppini, L.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Sung, K.B.

Thiberville, L.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Udovich, J.A.

Vercauteren, T.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Vicaut, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

Viellerobe, B.

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Vincent, P.

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

Wang, T.D.

Am. J. Respir. Crit. Care Med. (1)

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. Bourg-Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 1, 175,22–31, 2007.

Appl. Opt. (3)

EMBO Reports (1)

P. Vincent, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J-P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, “Live imaging of neural structure and function by fibered fluorescence microscopy,” EMBO Reports 7, 11,1154–1161, 2006.
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

H. Miyajima, K. Murakami, and M. Katashiro, “MEMS Optical scanners for microscopes,” IEEE J. Quantum Electron. 10,514–527 (2004).
[CrossRef]

J. Vasc. Res. (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson, and E. Vicaut, “Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation: A Comparison with Intravital Microscopy,” J. Vasc. Res. 41,400–411 (2004).
[CrossRef] [PubMed]

Lecture Notes in Computer Science (1)

G. Le Goualher, A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies with an integrated fibered confocal fluorescence microscope,” Lecture Notes in Computer Science 3217(II):761–768, Springer (Medical Image Computing and Computer Assisted Intervention), 2004.
[CrossRef]

Opt. Lett. (4)

Technol. Cancer Res. Treat. (1)

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer.,” Technol. Cancer Res. Treat. 2,491–504 (2003).
[PubMed]

Other (1)

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe, and F. Berier, “An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Lay-out of the fibered confocal fluorescence spectroscopy and multicolor imaging system.

Fig. 2.
Fig. 2.

Scheme of probe II.

Fig. 3.
Fig. 3.

Typical images obtained in vivo with the miniaturized version of probe II. Healthy colonic crypts stained with fluorescein can be seen. FOV is 240 μm. The working distance is 30 μm.

Fig. 4.
Fig. 4.

Images and spectra of a fixed human cervix sample stained with a 100μM solution of DiA (Invitrogen) (a,d) and with a 100μM solution of POPO-1 (Invitrogen) excited respectively at 488 nm and 405 nm (c,e). (b) is the fusion of these two images. (Probe II, FOV: 80μm×100μm). Signal losses visible on the spectra are due to filters spectral response in the case of 405/488nm architecture system.

Fig. 5.
Fig. 5.

Axial intensity profiles of a fluorescent bead showing the resolution of the spectroscopic channel for Probe I and Probe II at 488 nm. Axial resolution is determined by the FWHM of the curves.

Fig. 6.
Fig. 6.

Multilabeled images from fixed squamous and glandular human tissues with probe II. Cervix (a) and thyroid (b) samples are stained with 100μM solutions of DiA (red) and To-Pro-1 (Invitrogen) (blue), respectively excited at 488 nm and 638 nm. Multilabeled images (c,d,e) from fixed human cervix samples exhibiting different parakeratosis grades, confirmed by the histological analysis (FOV: 80μm×100μm).

Fig. 7.
Fig. 7.

Multilabeled images with probe I from fixed human cervix samples stained with DiA (blue) excited at 488 nm and To-Pro-1 (red) excited at 638 nm (FOV: 430μm×300μm). The density of cell nuclei (in red) indicates a high-grade parakeratosis. The lower resolution of the Probe I cannot give a detailed of view of the cellular membranes (in blue). The squamous epithelium pattern is clearly visible.

Tables (3)

Tables Icon

Table 1. Specifications of the probe II’s miniaturized version.

Tables Icon

Table 2. Dichroic and rejecting filters properties in the case of 488/635 nm architecture.

Tables Icon

Table 3. Lateral and axial resolution (LR, AR) measured at 488 and 638 nm, with probes I and II, for the spectroscopic and imaging channels (micrometers).

Metrics