Abstract

By use of CW diode laser stacked arrays, side-pumping Q-switched composite ceramic Nd:YAG rod laser based on a type II KTP crystal intracavity frequency-doubled, a high power high stability green laser has been demonstrated. Average output power of 104 W is obtained at a repetition rate of 10.6 kHz with a diode-to-green optical conversion efficiency of 10.9%. For the average output power of about 100 W, the measured pulse width is 132 ns with power fluctuation of less than 0.2%. The experimental results show that the green laser system using this novel ceramic Nd:YAG offers better laser performance and output stability than the traditional single Nd:YAG crystal green laser system with the same operating conditions and experimental configuration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
    [CrossRef]
  2. B. J. Le Garrec, G. J. Razé, P. Y. Thro, and M. Gilbert, "High-average-power diode-array-pumped frequency-doubled YAG laser," Opt. Lett. 21, 1990-1992 (1996).
    [CrossRef] [PubMed]
  3. E. C. Honea, C. A. Raymond, J. Beach,  et al., "Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm," Opt. Lett. 23, 1203-1205 (1998).
    [CrossRef]
  4. J. J. Chang, E. P. Dragon, C. A. Ebbers,  et al., "An efficient Diode-Pumped Nd:YAG Laser with 451 W of CW IR and 182 W of pulsed green output," in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 300-304.
  5. T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
    [CrossRef]
  6. J. Yi, H. J. Moon, and J. Lee, "Diode-pumped 100-W green Nd:YAG rod laser," Appl. Opt. 43, 3732-3737 (2004).
    [CrossRef] [PubMed]
  7. A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
    [CrossRef]
  8. D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
    [CrossRef]
  9. R. R. Monchamp, "The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12," J. Cryst. Growth. 11, 310-312 (1971).
    [CrossRef]
  10. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
    [CrossRef]
  11. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda,  et al., "Development of Nd:YAG ceramic lasers," in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 507-517.
  12. A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
    [CrossRef]
  13. H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
    [CrossRef]
  14. D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

2005 (3)

A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
[CrossRef]

D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
[CrossRef]

H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
[CrossRef]

2004 (4)

D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

J. Yi, H. J. Moon, and J. Lee, "Diode-pumped 100-W green Nd:YAG rod laser," Appl. Opt. 43, 3732-3737 (2004).
[CrossRef] [PubMed]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

2000 (1)

A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
[CrossRef]

1999 (1)

T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
[CrossRef]

1998 (1)

1996 (1)

1971 (1)

R. R. Monchamp, "The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12," J. Cryst. Growth. 11, 310-312 (1971).
[CrossRef]

Bachmann, A.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Beach, J.

Bi, Y.

A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
[CrossRef]

Bo, Y.

A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
[CrossRef]

Casella, R.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Fujikawa, S.

T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
[CrossRef]

Gasser, T.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Gilbert, M.

Gong, A. C.

A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
[CrossRef]

Honea, E. C.

Ikesue, A.

A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
[CrossRef]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Kojima, T.

T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
[CrossRef]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Le Garrec, B. J.

Lee, J.

Li, H. F.

H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
[CrossRef]

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Monchamp, R. R.

R. R. Monchamp, "The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12," J. Cryst. Growth. 11, 310-312 (1971).
[CrossRef]

Moon, H. J.

Raymond, C. A.

Razé, G. J.

Ruszat, R.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Sulser, T.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Taira, T.

A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
[CrossRef]

Thro, P. Y.

Ueda, K.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Wyler, S.

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

Xu, D. G.

H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
[CrossRef]

D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
[CrossRef]

D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

Yagi, H.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Yanagitani, T.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Yang, Y.

H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
[CrossRef]

Yao, J. Q.

D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
[CrossRef]

D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

Yasui, K.

T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
[CrossRef]

Yi, J.

Yoshida, K.

A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
[CrossRef]

Zhang, B. G.

D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
[CrossRef]

Zhou, R.

D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

Acta Opt. Sin. (1)

D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

Appl. Opt. (1)

Chin. Phys. Lett. (2)

A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005).
[CrossRef]

H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005).
[CrossRef]

Eur Urol. (1)

A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999).
[CrossRef]

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Cryst. Growth. (1)

R. R. Monchamp, "The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12," J. Cryst. Growth. 11, 310-312 (1971).
[CrossRef]

J. Photopolym. Sci. Technol. (1)

A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000).
[CrossRef]

Opt. Commun. (1)

D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005).
[CrossRef]

Opt. Lett. (2)

Other (2)

J. J. Chang, E. P. Dragon, C. A. Ebbers,  et al., "An efficient Diode-Pumped Nd:YAG Laser with 451 W of CW IR and 182 W of pulsed green output," in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 300-304.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda,  et al., "Development of Nd:YAG ceramic lasers," in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 507-517.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic diagram of the green laser based on ceramic Nd:YAG.

Fig. 2.
Fig. 2.

The section of pump module assembly

Fig. 3.
Fig. 3.

The output power vs current of diode laser module at 25°C, with slope of 80 W/A.

Fig. 4.
Fig. 4.

Green laser output power and diode-to-green optical efficiency of both Nd:YAG ceramic and Nd:YAG single crystal under the same operational conditions and experimental set-up.

Fig. 5.
Fig. 5.

The stability of 100 W green laser based on ceramic Nd:YAG

Fig. 6.
Fig. 6.

The pulse shape of the 100 W green laser based on ceramic Nd:YAG

Fig. 7.
Fig. 7.

Two-dimensional beam profiles of 100 W green laser based on ceramic Nd:YAG

Metrics