Abstract

We report the demonstration of compact fluidic fibre lasers based on capillary tubes and photonic crystal fibres, featuring single channel and multiple laterally integrated fluidic lasers respectively. Their preparation was based on capillary action and lasing occurred without the need for external mirrors or lithographically defined microstructures. The fibre lasers were found to be tunable by varying the chromophore density in the liquid core and a functional wavelength selectivity mechanism inherent in both types of lasers provided a long free spectral range that does not correspond to the length of the fibres. The enhanced mode spacing is attributed to a Vernier resonant effect.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  2. D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
    [CrossRef]
  3. S.C.-McGreehin, T. F. Krauss, K. Dholakia, "Integrated monolithic optical manipulation," Lab on a Chip 6, 1122-1124 (2006).
    [CrossRef]
  4. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
    [CrossRef]
  5. D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  6. Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998).
    [CrossRef]
  7. S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
    [CrossRef] [PubMed]
  8. Z. Li, Z. Zhang, A. Scherer, D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
    [CrossRef] [PubMed]
  9. M. Gersborg-Hansen, A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
    [CrossRef] [PubMed]
  10. T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002).
    [CrossRef]
  11. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
    [CrossRef] [PubMed]
  12. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  13. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. Martijn de Sterke, B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
    [CrossRef] [PubMed]
  14. B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
    [CrossRef]
  15. H. G. Danielmeyer, "Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation," J. Appl. Phys. 42, 3125-3132 (1971).
    [CrossRef]
  16. S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
    [CrossRef]
  17. D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
    [CrossRef]
  18. E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
    [CrossRef]
  19. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
    [CrossRef]
  20. M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, "Linewidth-narrowing mechanism in lasers by nonlinear wave mixing," Opt. Lett. 19, 1406-1408 (1994).
    [CrossRef] [PubMed]
  21. R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
    [CrossRef]
  22. Y.H. Ja, "Optical Vernier filter with fibre grating Fabry-Perot resonators," Appl. Opt. 346164-6167 (1995).
    [CrossRef] [PubMed]
  23. A.J. Poustie, N. Finlayson, P. Harper, "Multiwavelength fiber laser using spatial mode beating filter," Opt. Lett. 19, 716-718 (1994).
    [CrossRef] [PubMed]
  24. L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, S. P. Palto, "Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation," Appl. Phys. Lett. 89, 031114 1-3 (2006).
    [CrossRef]

2007 (1)

2006 (4)

D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

S.C.-McGreehin, T. F. Krauss, K. Dholakia, "Integrated monolithic optical manipulation," Lab on a Chip 6, 1122-1124 (2006).
[CrossRef]

2005 (2)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
[CrossRef]

2004 (3)

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
[CrossRef]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. Martijn de Sterke, B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (3)

T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

2000 (3)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

1998 (2)

Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998).
[CrossRef]

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

1995 (1)

1994 (2)

1971 (1)

H. G. Danielmeyer, "Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation," J. Appl. Phys. 42, 3125-3132 (1971).
[CrossRef]

Avrutin, E. A.

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

Baldwin, K. W.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Bhattacharyya, D.

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

Bimberg, D.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Blau, W.J.

T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002).
[CrossRef]

Bognar, S.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Daisy, R.

Danielmeyer, H. G.

H. G. Danielmeyer, "Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation," J. Appl. Phys. 42, 3125-3132 (1971).
[CrossRef]

Dolinski, M.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Eggleton, B. J.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. Martijn de Sterke, B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
[CrossRef] [PubMed]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Emery, T.

Erickson, D.

Finlayson, N.

Fischer, B.

Gersborg-Hansen, M.

Harper, P.

Heitz, R.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Helbo, B.

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Horowitz, M.

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

Ja, Y.H.

Justis, N.

D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
[CrossRef]

Kerbage, C.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Kjeldsen, B. G.

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Kobayashi, T.

T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002).
[CrossRef]

Kragh, S.

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen, A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Kuhlmey, B. T.

Ledenstov, N. N.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Levina, G.

R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

Li, Z.

Lo, Y.-H.

D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
[CrossRef]

Mach, P.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Marsh, J. H.

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

Martijn de Sterke, C.

Mashiko, S.

S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
[CrossRef]

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

Nakahama, T.

S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
[CrossRef]

Nakata, Y.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Onischenko, A. I.

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

O'Reilly, E. P.

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

Ouyang, D.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Polson, R. C.

R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

Poustie, A. J.

Psaltis, D.

Quake, S. R.

D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

Reimers, J. L.

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Ribbat, Ch.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Rockwood, T.

Rogers, J. A.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Scherer, A.

Sellin, R. L.

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Snee, P.T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Steel, M. J.

Steinvurzel, P.

Sugawara, M.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

Vardeny, Z. V.

R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

White, T. P.

Whitesides, G.M.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998).
[CrossRef]

Windeler, R. S.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Xia, Y.

Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yokoyama, S.

S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
[CrossRef]

Zhang, D.-Y.

D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
[CrossRef]

Zhang, Z.

Zyskind, J. L.

Angew. Chem. Int. Ed. (1)

Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998).
[CrossRef]

App. Phys. Lett. (1)

D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000).
[CrossRef]

D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Electron. Lett. (2)

E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998).
[CrossRef]

T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. G. Danielmeyer, "Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation," J. Appl. Phys. 42, 3125-3132 (1971).
[CrossRef]

J. Luminescence (1)

S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005).
[CrossRef]

Lab on a Chip (1)

S.C.-McGreehin, T. F. Krauss, K. Dholakia, "Integrated monolithic optical manipulation," Lab on a Chip 6, 1122-1124 (2006).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000).
[CrossRef]

Science (2)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

Sens. Actuators A (1)

B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004).
[CrossRef]

Other (1)

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, S. P. Palto, "Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation," Appl. Phys. Lett. 89, 031114 1-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a), (b). SEM images of the fibres; inset shows the lateral dimensions of the cores. (c). the molecular structure of the organic dye Perylene Red. (d). A schematic of the setup for the longitudinal excitation of the fluidic fibres.

Fig. 2.
Fig. 2.

The emission spectra at threshold and 1.26 times above threshold for the 2 μm diameter capillary (a) and for the photonic crystal fibre (b). In (c), the near field images are depicted below (i) and above (ii) threshold.

Fig. 3.
Fig. 3.

Comparative study of the input-output relationship for a single and multi-channel fibre laser (left) and for a multi-channel laser of different lengths (right). In the right figure the black arrow designates the threshold energies for the three lasers.

Fig. 4.
Fig. 4.

For increasing chromophore densities, the blue-end of the fluorescence spectra red-shifts (a) and the centre wavelength of the laser emission spectrum is accordingly tuned (b). Under the same conditions, the laser efficiency does not vary significantly (c).

Fig. 5.
Fig. 5.

The linear dependence of the cavity mode spacing with the fibre length for the capillary (oe-15-7-3962-i001) and the photonic crystal fibre (oe-15-7-3962-i002).

Metrics