Abstract

A diode-pumped picosecond 8-pass amplifier with a liquid-nitrogen-cooled Yb:YAG crystal has been developed. An average output power of 23.7 W with a near-diffraction-limited beam quality (M 2 < 1.2) was obtained at a pulse repetition rate of 80 kHz and a pulse duration of 11.7 ps. Average powers above 20 W were also obtained in the 30–80 kHz repetition rate range. The pulse energy reached almost 1 mJ at the 20 kHz repetition rate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
    [CrossRef]
  2. J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
    [CrossRef]
  3. M. Hornung, M. Siebold, J. Hein, R. Sauerbrey, G. Hollemann, "Diode-pumped amplification of 7-picosecond-pulses with repetition-rates up to 100 kHz and 22 W average output power," Conference Digest of CLEO/QELS Europe 2005, CA4-4, Munchen, Germany, June 12-17, 2005.
  4. D. Müller, S. Erhard, and A. Giesen, "High pwer thin disk Yb:YAG regenerative amplifier," OSA Trends in Optics and Photonics Series Vol. 50, Advanced Solid-State Lasers (Optical Society of America, 2001), 319-324.
  5. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet," J. Opt. Soc. Am. B 20, 1975-1979 (2003).
    [CrossRef]
  6. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
    [CrossRef]
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  8. G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
    [CrossRef]
  9. R. Wynne, J. L. Daneu, and T. Y. Fan, "Thermal coefficients of the expansion and refractive index in YAG," Appl. Opt. 38, 3282-3284 (1999).
    [CrossRef]
  10. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
    [CrossRef]
  11. S. Tokita, J. Kawanaka, M Fujita, T. Kawashima, and Y. Izawa, "High-energy picosecond regenerative amplifier with cryogenically cooled Yb:YAG," Technical Digest of CLEO/QELS 2006, CWN4, Long Beach, California, USA, May 21-26, 2006
  12. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
    [CrossRef]
  13. L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]
  14. D. C. Brown, "The Promise of Cryogenic Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
    [CrossRef]

2005

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

D. C. Brown, "The Promise of Cryogenic Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
[CrossRef]

2004

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

2003

1999

1971

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

1963

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Aggarwal, R. L.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Bass, M.

Bergmann, T.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Brown, D. C.

D. C. Brown, "The Promise of Cryogenic Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

Daneu, J. L.

Deng, P.

Dong, J.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

R. Wynne, J. L. Daneu, and T. Y. Fan, "Thermal coefficients of the expansion and refractive index in YAG," Appl. Opt. 38, 3282-3284 (1999).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

Gan, F.

Hein, J.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Hollemann, G.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Hornung, M.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

Kleinbauer, J.

J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
[CrossRef]

Knappe, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
[CrossRef]

Mao, Y.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

Oliver, D. W.

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Paunescu, G.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

Sauerbrey, R.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Siebold, M.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

Slack, G. A.

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

Wallenstein, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
[CrossRef]

Wynne, R.

Appl. Opt.

Appl. Phys. B

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B 80, 635-638 (2005).
[CrossRef]

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, "A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses," Appl. Phys. B 78, 287-290 (2004).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, "13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate," Appl. Phys. B 81, 163-166 (2005).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. C. Brown, "The Promise of Cryogenic Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

J. Appl. Phys.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, "Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator," Jpn. J. Appl. Phys. 44, L1529-L1531 (2005).
[CrossRef]

Phys. Rev. B

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Other

S. Tokita, J. Kawanaka, M Fujita, T. Kawashima, and Y. Izawa, "High-energy picosecond regenerative amplifier with cryogenically cooled Yb:YAG," Technical Digest of CLEO/QELS 2006, CWN4, Long Beach, California, USA, May 21-26, 2006

M. Hornung, M. Siebold, J. Hein, R. Sauerbrey, G. Hollemann, "Diode-pumped amplification of 7-picosecond-pulses with repetition-rates up to 100 kHz and 22 W average output power," Conference Digest of CLEO/QELS Europe 2005, CA4-4, Munchen, Germany, June 12-17, 2005.

D. Müller, S. Erhard, and A. Giesen, "High pwer thin disk Yb:YAG regenerative amplifier," OSA Trends in Optics and Photonics Series Vol. 50, Advanced Solid-State Lasers (Optical Society of America, 2001), 319-324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the 8-pass amplifier system with liquid-nitrogen-cooled Yb:YAG crystals. M1, M3, M4, M6–M9, flat mirrors; M2, concave mirror with 1 m focal length; M5, convex mirror with -5 m focal length; TFP, TFP1, thin-film polarizers; SESAM, semiconductor saturable absorber mirror; λ/2, half-wave plate; λ/4, quarter-wave plate; LN2, liquid nitrogen.

Fig. 2.
Fig. 2.

Measured small-signal gain coefficient as a function of incident pump power and pump intensity at the beam waist.

Fig. 3.
Fig. 3.

Average output powers as functions of incident pump power for five different repetition rates between 20 and 80 kHz.

Fig. 4.
Fig. 4.

Average output power and pulse energy as functions of repetition rate at 90.6 W pump power.

Fig. 5.
Fig. 5.

Intensity autocorrelation trace of output pulses at 80 kHz repetition rate and 90.6 W pump power.

Fig. 6.
Fig. 6.

Spatial profile of the 8-pass amplifier output beam at 80 kHz repetition rate and 90.6 W pump power. And horizontal and vertical slice through center of the beam profile with Gaussian fit.

Metrics