Abstract

Numerical simulation suggests that for obtaining a giant (G) pulse from a 2.06 μm solid state Tm,Ho:YLF laser by the active Q-switching technique, the optimal Ho concentration will be higher than that used in normal operation. In simulations of 500 ns G-pulse generation maximal efficiency occurred at 6 % Tm and 1.0 % Ho, in contrast with 0.4% Ho found to be optimal for the normal pulse generation. Maximal energy output from Tm,Ho:YLF lasers can be achieved by incorporating a delay of about 0.7 ms between 0.5 ms 780 nm LD pulsed pumping and the start of Q-switched G-pulse operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
    [CrossRef]
  2. V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
    [CrossRef]
  3. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
    [CrossRef]
  4. M. G. Jani, R. J. Reeves, R. C. Powell, G. J. Quarles and L. Esterovitz, "Alexandrite-laser excitation of a Tm:Ho:Y3Al5O12 laser," J. Opt. Soc. Am. B 8, 741-746 (1991).
    [CrossRef]
  5. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, "Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10 Hz," Opt. Lett. 20, 872-874 (1995).
    [CrossRef] [PubMed]
  6. J. Yu, U. N. Singh, P. Barnes and M. Petros, "125-mJ diode-pumped-injection-seeded HoTmYLF laser," Opt. Lett. 23, 780-782 (1998).
    [CrossRef]
  7. A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
    [CrossRef]
  8. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).
  9. N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
    [CrossRef]
  10. C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
    [CrossRef]
  11. G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996).
    [CrossRef]
  12. D. Bruneau, S. Delmonte, and J. Pelon, "Modeling of Tm, Ho: YAG and Tm, Ho: YLF 2-μm lasers and calculation of extractable energies," Appl. Opt. 37, 8406-8419 (1998).
    [CrossRef]
  13. G. L. Bourdet and G. Lescroart, "Theoretical modeling and design of a Tm, Ho: YLiF4 microchip laser," Appl. Opt. 38, 3275-3281 (1999).
    [CrossRef]
  14. S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998).
    [CrossRef]
  15. V. Sudesh and K. Asai, Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study," J. Opt. Soc. Am. B 20, 1829-1837 (2003).
    [CrossRef]
  16. A. Sato, K. Asai and K. Mizutani, "Lasing characteristics and optimizations of diode-side-pumped Tm,Ho:GdVO4 laser," Opt. Lett. 29, 836 -838 (2004).
    [CrossRef] [PubMed]
  17. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4," J. Appl. Phys. 95, 3255-3271 (2004).
    [CrossRef]
  18. G. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M. Tonelli, and P. Laporta, "Widely tunable continuous-wave diode-pumped 2-µm Tm-Ho:KYF4 laser," Opt. Lett. 29, 715-717 (2004).
    [CrossRef] [PubMed]
  19. J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, "Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities," Appl. Opt. 39, 2418-2421 (2000).
    [CrossRef]
  20. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, "1 J/pulse Q-switched 2 μm solid-state laser," Opt. Lett. 31, 462-464 (2006).
    [CrossRef] [PubMed]
  21. X. Zhang, Y. Ju and Y. Wang, "Theoretical and experimental investigation of actively Q-switched Tm,Ho:YLF lasers," Opt. Express 14, 7745-7750 (2006).
    [CrossRef] [PubMed]
  22. P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005).
    [CrossRef]
  23. V. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]

2006

2005

P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005).
[CrossRef]

2004

2003

2000

1999

1998

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998).
[CrossRef]

D. Bruneau, S. Delmonte, and J. Pelon, "Modeling of Tm, Ho: YAG and Tm, Ho: YLF 2-μm lasers and calculation of extractable energies," Appl. Opt. 37, 8406-8419 (1998).
[CrossRef]

J. Yu, U. N. Singh, P. Barnes and M. Petros, "125-mJ diode-pumped-injection-seeded HoTmYLF laser," Opt. Lett. 23, 780-782 (1998).
[CrossRef]

A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
[CrossRef]

1996

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
[CrossRef]

G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996).
[CrossRef]

1995

1993

N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).

1992

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
[CrossRef]

1991

1989

J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
[CrossRef]

1988

Alpat'ev, A. N.

A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
[CrossRef]

Alpat'ev, N.

N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).

Arimoto, Y.

Asai, K.

Bai, Y.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4," J. Appl. Phys. 95, 3255-3271 (2004).
[CrossRef]

C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, "Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10 Hz," Opt. Lett. 20, 872-874 (1995).
[CrossRef] [PubMed]

Barnes, P.

Bourdet, G. L.

Bruneau, D.

Burns, D.

P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005).
[CrossRef]

Cerný, P.

P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005).
[CrossRef]

Chen, S.

Della Valle, G.

Delmonte, S.

Esterovitz, L.

Filer, E. D.

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

Franich, D. M.

J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
[CrossRef]

French, V. A.

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

Galzerano, G.

Han, G.

C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
[CrossRef]

Hara, H.

Izawa, J.

Jackson, S. D.

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998).
[CrossRef]

Jani, M. G.

Ju, Y.

Kavaya, M. J.

King, T. A.

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998).
[CrossRef]

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
[CrossRef]

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
[CrossRef]

Laporta, P.

Lee, C. J.

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
[CrossRef]

Lescroart, G.

Lockard, G. E.

Mizutani, K.

Modlin, E. A.

Morison, C. A.

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

Murray, K. E.

Nakajima, H.

Naranjo, F. L.

Pelon, J.

Petrin, R. R.

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
[CrossRef]

Petros, M.

Petzar, P. J.

Powell, R. C.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
[CrossRef]

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

M. G. Jani, R. J. Reeves, R. C. Powell, G. J. Quarles and L. Esterovitz, "Alexandrite-laser excitation of a Tm:Ho:Y3Al5O12 laser," J. Opt. Soc. Am. B 8, 741-746 (1991).
[CrossRef]

Quarles, G. J.

Reeves, R. J.

Risk, V. P.

Rustad, G.

G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996).
[CrossRef]

Sani, E.

Sato, A.

Shcherbakov, I. A.

A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
[CrossRef]

N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).

Singh, U. N.

Smirnov, V. A.

A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
[CrossRef]

N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).

Stenersen, K.

G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996).
[CrossRef]

Sudesh, V.

Taccheo, S.

Toncelli, A.

Tonelli, M.

Trieu, B. C.

Tyminski, J. K.

J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4," J. Appl. Phys. 95, 3255-3271 (2004).
[CrossRef]

Wang, Y.

Yu, J.

Zhang, X.

Appl. Opt.

IEEE J. Quantum Electron.

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996).
[CrossRef]

C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996).
[CrossRef]

G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005).
[CrossRef]

J. Appl. Phys.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4," J. Appl. Phys. 95, 3255-3271 (2004).
[CrossRef]

J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Kvantovaya Elektron.

N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).

Opt. Express

Opt. Lett.

Opt. Mater.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992).
[CrossRef]

Phys. Rev. B

V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992).
[CrossRef]

Quantum Electron.

A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Energy transfer processes in Tm, Ho doped materials.

Fig. 2.
Fig. 2.

Pulse generation in normal mode: (a) pulse power versus time and (b) pulse energy versus time for two Tm, Ho concentrations.

Fig. 3.
Fig. 3.

G-pulse generation: (a) pulse power versus time and (b) pulse energy versus time.

Fig. 4.
Fig. 4.

Inversion population dynamics in G-pulse generation mode.

Fig. 5.
Fig. 5.

Comparison of output pulse energy in normal (solid) and G-pulse (dashed) mode.

Fig.6.
Fig.6.

Optimization of G-pulse generation: (a) G-pulse powers versus time and (b) corresponding population inversion densities versus time for three different scenarios.

Fig. 7.
Fig. 7.

Optimization of operation times: (a) Q-switch is open by the end of pumping and (b) pumping time is 0.5 ms and Q-switch is open after a delay.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dn 1 dt = R p ( t , z , r ) + n 2 τ 2 + p 28 n 2 n 8 p 71 n 7 n 1 p 41 n 4 n 1 + p 22 n 2 2 , + p 27 n 2 n 7 p 51 n 5 n 1 p 61 n 6 n 1 + p 38 n 3 n 8
dn 2 dt = n 2 τ 2 + n 3 τ 3 p 28 n 2 n 8 + p 71 n 7 n 1 + 2 p 41 n 4 n 1 2 p 22 n 2 2 , p 27 n 2 n 7 + p 51 n 5 n 1
dn 3 dt = n 3 τ 3 + n 4 τ 4 + p 61 n 6 n 1 p 38 n 3 n 8 ,
dn 4 dt = R p ( t , z , r ) n 4 τ 4 p 41 n 4 n 1 + p 22 n 2 2 ,
dn 5 dt = n 5 τ 5 + p 27 n 7 n 2 p 51 n 5 n 1 ,
dn 6 dt = n 6 τ 6 + n 5 τ 5 p 61 n 6 n 1 + p 38 n 8 n 3 .
dn 7 dt = n 7 τ 7 + n 6 τ 6 + p 28 n 2 n 8 p 71 n 7 n 7 p 27 n 2 n 7 + p 51 n 5 n 1 se η ( f 7 n 7 f 8 n 8 ) ϕ t r .
dn 8 dt = n 7 τ 7 p 28 n 2 n 8 + p 71 n 7 n 1 + p 61 n 6 n 1 p 38 n 3 n 8 + se η ( f 7 n 7 f 8 n 8 ) ϕ t r ,
d Φ 0 ( t ) dt = Φ 0 ( t ) c σ se η ∫∫ V cr ( f 7 n 7 f 8 n 8 ) ϕ 0 ( r , z ) dV Φ 0 ( t ) τ c + ε τ 7 ∫∫ V cr n 7 dV ,
τ c 1 = c 2 L opt [ ln R 1 ln ( 1 T out ) ] ,
τ c 1 = c 2 L opt [ ln R 1 ln ( 1 T out ) + α qs l qs ] ,
ϕ ( r , z ) = 2 πw 0 2 L cav exp ( 2 r 2 w 0 2 ) ,
J ( t ) = Φ 0 ( t ) ch ν las 2 L opt ln 1 1 T out ,
I 0 ( t , r ) = Φ 0 ( t ) ch ν las 2 L opt ln 1 1 T out × 1 2 π w 0 * 2 exp ( r 2 2 w 0 * 2 ) ,
R p ( t ) η p η a Q p πd 2 L cr p Δ t p ,

Metrics