Abstract

We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized protrusions and an integrated metal shadow mask. In the CNP process, a combined UV mask and nanoimprint stamp is embossed into the resist, which is softened by heating, and UV exposed. Hereby the mm to μm sized features are defined by the UV exposure through the metal mask, while nm-scale features are formed by mechanical deformation (nanoimprinting). The lasers are integrated with undoped SU-8 polymer waveguides. The waferscale fabrication process has a yield above 90% and the emission wavelengths are reproduced within 2 nm. Confinement of the light on the chip is demonstrated, and the influence on the laser wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).
  2. L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).
  3. D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Micro-fabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005).
    [CrossRef] [PubMed]
  4. B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
    [CrossRef]
  5. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
    [CrossRef] [PubMed]
  6. T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
    [CrossRef]
  7. H. Kogelnik and C. V. Shank, "Stimulated Emission in a Periodic Structure," Appl. Phys. Lett. 18, 152-154 (1971).
    [CrossRef]
  8. Y. Oki, T. Yoshiura, Y. Chisaki, and M. Maeda, "Lasers and Laser Optics - Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide," Appl. Opt. 41, 5030-5035 (2002).
    [CrossRef] [PubMed]
  9. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
    [CrossRef]
  10. M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
    [CrossRef]
  11. D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
    [CrossRef]
  12. D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
    [CrossRef]
  13. X. Cheng and L. J. Guo, "One-step lithography for various size patterns with a hybrid mask-mold," Microelectron. Eng. 71, 288-293 (2004).
    [CrossRef]
  14. V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
    [CrossRef]
  15. R. Hunsperger, Integrated Optics: Theory and Technology, Fifth edition (Springer-Verlag, Berlin, 2002).
  16. M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
    [CrossRef]
  17. M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
    [CrossRef]

2007 (1)

2006 (1)

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

2005 (3)

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Micro-fabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005).
[CrossRef] [PubMed]

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

2004 (3)

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
[CrossRef]

X. Cheng and L. J. Guo, "One-step lithography for various size patterns with a hybrid mask-mold," Microelectron. Eng. 71, 288-293 (2004).
[CrossRef]

2003 (1)

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

2002 (3)

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).

Y. Oki, T. Yoshiura, Y. Chisaki, and M. Maeda, "Lasers and Laser Optics - Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide," Appl. Opt. 41, 5030-5035 (2002).
[CrossRef] [PubMed]

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

2001 (1)

T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
[CrossRef]

1999 (1)

V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, "Stimulated Emission in a Periodic Structure," Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

Arroyo, O.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Baev, V.

V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
[CrossRef]

Balslev, S.

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Micro-fabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005).
[CrossRef] [PubMed]

Beck, M.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Bilenberg, B.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Bøggild, P.

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

Cheng, X.

X. Cheng and L. J. Guo, "One-step lithography for various size patterns with a hybrid mask-mold," Microelectron. Eng. 71, 288-293 (2004).
[CrossRef]

Chisaki, Y.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
[CrossRef]

Christiansen, M. B.

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

Gersborg-Hansen, M.

Graczyk, M.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Gregersen, M. M.

Guo, L. J.

X. Cheng and L. J. Guo, "One-step lithography for various size patterns with a hybrid mask-mold," Microelectron. Eng. 71, 288-293 (2004).
[CrossRef]

Hansen, M.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Jeppesen, C.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Johansen, D.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Keil, M.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, "Stimulated Emission in a Periodic Structure," Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Micro-fabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005).
[CrossRef] [PubMed]

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
[CrossRef]

Lading, L.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).

Latz, T.

V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
[CrossRef]

Ling, T. G. I.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Madsen, D. N.

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

Maeda, M.

Maximov, I.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Montelius, L.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Nielsen, L. B.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).

Nielsen, R. B.

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

Nielsen, T.

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
[CrossRef]

Nilsson, D.

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Micro-fabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005).
[CrossRef] [PubMed]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
[CrossRef]

Obieta, I. M.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Oki, Y.

Ozkapici, V.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Petersen, D. H.

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
[CrossRef]

Sarwea, E.-L.

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

Scheel, D.

T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
[CrossRef]

Schmidt, M. S.

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

Schøler, M.

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

Sevel, T.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).

Shade, W.

T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, "Stimulated Emission in a Periodic Structure," Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

Szabo, P.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Tegenfeldt, J. O.

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Toschek, P.

V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
[CrossRef]

Verpoorte, E.

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

Voss, T.

T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
[CrossRef]

Yoshiura, T.

Appl. Opt. (2)

Appl. Phys. B (2)

T. Voss, D. Scheel, and W. Shade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105- 109 (2001).
[CrossRef]

V. Baev, T. Latz, and P. Toschek, "Laser intracavity absorption spectroscopy," Appl. Phys. B 69, 171-202 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

H. Kogelnik and C. V. Shank, "Stimulated Emission in a Periodic Structure," Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3117 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (2)

M. B. Christiansen, M. Schøler, S. Balslev, R. B. Nielsen, D. H. Petersen, and A. Kristensen, "Wafer-scale fabrication of polymer distributed feedback lasers," J. Vac. Sci. Technol. B 24, 3252-3257 (2006).
[CrossRef]

B. Bilenberg, M. Hansen, D. Johansen, V. Ozkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithography," J. Vac. Sci. Technol. B 23, 2944-2949 (2005).
[CrossRef]

Lab. Chip (1)

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

Microelectron. Eng. (3)

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73-74, 372-376 (2004).
[CrossRef]

M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwea, T. G. I. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectron. Eng. 61-62, 441-448 (2002).
[CrossRef]

X. Cheng and L. J. Guo, "One-step lithography for various size patterns with a hybrid mask-mold," Microelectron. Eng. 71, 288-293 (2004).
[CrossRef]

Nanotechnology (1)

M. S. Schmidt, T. Nielsen, D. N. Madsen, A. Kristensen, and P. Bøggild, "Nano-scale silicon structures by using Carbon nanotubes as reactive ion masks," Nanotechnology 16, 750-753 (2005).
[CrossRef]

Opt. Express (1)

Proceedings of the IEEE Sensors (1)

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing biosensors," Proceedings of the IEEE Sensors 2002 pp. 229-232 (2002).

Rev. Sci. Instrum. (1)

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004).
[CrossRef]

Other (1)

R. Hunsperger, Integrated Optics: Theory and Technology, Fifth edition (Springer-Verlag, Berlin, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(Color online) Design of the lasers and chips. (a) Schematic illustration of a laser. The laser is a 245 nm thick, 250 μm wide, and 1 mm long slab waveguide, made of Rhodamine 6G doped SU-8 polymer. Surface corrugations provide Bragg type feed-back, enabling laser light to be emitted from the ends of the laser in the chip plane. (b) Side view of the laser, showing the grating period Λ. The depth of the corrugations range from 10 to 60 nm, with Λ ≈ 200 nm. (c) The chip layout. The laser (blue) is positioned 10 μm from a curved waveguide made of 4.2 μm thick undoped SU-8 polymer (grey). (d) The wafer layout. 20 chips are defined across a 10 cm diameter wafer.

Fig. 2.
Fig. 2.

(Color online) The fabrication process. (a) The CNP stamp is fabricated from an UV transparent quartz wafer. Using EBL and RIE the nm sized protrusions are defined. (b) By UVL and metal lift off a Cr/Al shadow mask is integrated in the stamp, and an antiadhesion coating is applied. (c) The imprint substrate is a 10 cm diameter Si wafer with ≈3 μm SiO2 and 245 nm of SU-8, doped with 3.2 μmol Rhodamine 6G per g SU-8. (d) In the CNP process the gratings are nanoimprinted into the uncured SU-8, which is subsequently UV exposed through the stamp and hard baked. (e) The stamp is separated from the substrate and the unexposed SU-8 is developed away. (f)-(g) Undoped SU-8 waveguides are defined in a standard UVL process.

Fig. 3.
Fig. 3.

(Color online) Images of stamp and imprinted gratings. (a)-(b) SEM and AFM images of a stamp grating with 60 nm tall protrusions. (c)-(d) SEM and AFM images of SU-8 laser gratings imprinted with the stamp in (a)-(b). (e) Optical microscope image of a laser during operation. The pump light is removed with a filter. The laser fluoresces due to the rhodamine 6G doping, and the central phaseshift is also seen. The input end of the undoped SU-8 waveguide is also seen, although less clearly, since it is not fluorescent.

Fig. 4.
Fig. 4.

(Color online) (a) Spectra from four polymer DFB lasers pumped at 39 μJ/mm2. The emiision wavelength clearly depends on Λ (b) A typical output vs pump power curve. The threshold is seen to be around 8 μJ/mm2.

Fig. 5.
Fig. 5.

(Color online) (a) Spectra from the same Λ=197 nm laser pumped at 39 μJ/mm2 when the upper cladding is air or ethylene glycol (EG). The different refractive index of the EG cladding causes the emission wavelength to shift. (b) Emission wavelength as a function of temperature for a Λ=202 nm laser.

Fig. 6.
Fig. 6.

(Color online) Plot of pump and polymer DFB laser signal intensities, as a function of measurement fiber position. The length scale on the x-axis of the plot is shown to scale below the chip drawing. The DFB laser signal is effectively collected by the integrated waveguide, and transported to the edge of the chip.

Tables (2)

Tables Icon

Table 1. STS RIE parameters used in the stamp fabrication.

Tables Icon

Table 2. Measured data on wavelengths (λ) and threshold pump fluences Qth for all 18 functional devices from a 10 cm diameter wafer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 n eff Λ ,

Metrics