Abstract

We describe the fabrication of integrated hollow waveguides through guided self-assembly of straight-sided, thin film delamination buckles within a multilayer system of chalcogenide glass and polymer. The process is based on silver photodoping, which was used to control both the stress and adhesion of the chalcogenide glass films. Straight, curved, crossing, and tapered microchannels were realized in parallel. The channels are cladded by omnidirectional dielectric reflectors designed for low-loss, air-core guiding of light in the 1550-1700 nm wavelength range. Loss as low as ~15 dB/cm was measured for channels of height ~2.5 μm, in good agreement with both an analytical ray optics model and finite difference numerical simulations. The loss is determined mainly by the reflectivity of the cladding mirrors, which is ~0.995 for the as-fabricated devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).
  4. S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  5. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  6. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
    [CrossRef]
  7. S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004).
    [CrossRef] [PubMed]
  8. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
    [CrossRef]
  9. G. R. Hadley, J. G. Fleming, S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004).
    [CrossRef] [PubMed]
  10. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005).
    [CrossRef] [PubMed]
  11. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  12. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999).
    [CrossRef]
  13. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005).
    [CrossRef] [PubMed]
  14. T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
    [CrossRef] [PubMed]
  15. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
    [CrossRef]
  16. G. Gioia, M. Ortiz, "Delamination of compressed thin films," Adv. Appl. Mech. 33, 119-192 (1997).
    [CrossRef]
  17. L. B. Freund, S. Suresh, Thin Film Materials, Stress, Defect Formation, and Surface Evolution (Cambridge University Press, London, 2003).
  18. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
    [CrossRef]
  19. K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
    [CrossRef]
  20. F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
    [CrossRef]
  21. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, "Femtosecond pulsed laser direct write production of nano- and microfluidic channels," Appl. Phys. Lett. 88, 183113-1-3 (2006).
    [CrossRef]
  22. B. Audoly, "Stability of straight delamination blisters," Phys. Rev. Lett. 83, 4124-4127 (1999).
    [CrossRef]
  23. A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
    [CrossRef]
  24. T. Wagner, P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application," J. Non-Cryst. Solids 266-269, 979-984 (2000).
    [CrossRef]
  25. J. Scheuer and A. Yariv, "Two-dimensional optical ring resonators based on radial Bragg resonance," Opt. Lett. 28, 1528-1530 (2003).
    [CrossRef] [PubMed]
  26. W. J. Tropf, M. E. Thomas, and T. J. Harris, "Properties of crystals and glasses," in OSA Handbook of Optics, Vol. II, Devices, Measurements, and Properties (McGraw-Hill, New York, 1995).
  27. G. Camilo, "Mechanical properties of chalcogenide glasses - a review," Proc. of SPIE 4940, 222-229 (2003).
    [CrossRef]
  28. "Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AI_10_APP_SAP.pdf.
  29. G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
    [CrossRef]
  30. S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
    [CrossRef]
  31. C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
    [CrossRef]
  32. C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
    [CrossRef]
  33. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Comm. 19, 427-430 (1976).
    [CrossRef]
  34. Y. Xu, A. Yariv, J. G. Fleming, S.-Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003).
    [CrossRef] [PubMed]
  35. N. Ponnampalam, R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004).
    [CrossRef] [PubMed]
  36. T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
    [CrossRef]

2007

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
[CrossRef]

2006

F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
[CrossRef] [PubMed]

2005

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005).
[CrossRef] [PubMed]

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005).
[CrossRef] [PubMed]

2004

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004).
[CrossRef] [PubMed]

G. R. Hadley, J. G. Fleming, S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004).
[CrossRef] [PubMed]

S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004).
[CrossRef] [PubMed]

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

N. Ponnampalam, R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004).
[CrossRef] [PubMed]

2003

2002

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
[CrossRef]

2001

C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
[CrossRef]

2000

T. Wagner, P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

1999

B. Audoly, "Stability of straight delamination blisters," Phys. Rev. Lett. 83, 4124-4127 (1999).
[CrossRef]

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
[CrossRef]

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999).
[CrossRef]

1998

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

1997

G. Gioia, M. Ortiz, "Delamination of compressed thin films," Adv. Appl. Mech. 33, 119-192 (1997).
[CrossRef]

1991

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

1976

P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Comm. 19, 427-430 (1976).
[CrossRef]

Akiyama, S.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Audoly, B.

B. Audoly, "Stability of straight delamination blisters," Phys. Rev. Lett. 83, 4124-4127 (1999).
[CrossRef]

Barber, J. P.

Belliard, L.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Bermel, P.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Bernini, R.

Bianchini, E.

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Camilo, G.

G. Camilo, "Mechanical properties of chalcogenide glasses - a review," Proc. of SPIE 4940, 222-229 (2003).
[CrossRef]

Campopiano, S.

Chakrabarty, J.

C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Chen, C.-C.

Chigrin, D. N.

Choi, S. R.

S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
[CrossRef]

Clement, T. J.

Cleymand, F.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Colin, J.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Coupeau, C.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Cui, X.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

DeCorby, R. G.

Duan, X.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Dwivedi, P. K.

Elliott, S. R.

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Evans, A. G.

S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
[CrossRef]

Ewen, P. J. S.

T. Wagner, P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fleming, J. G.

Gaponenko, S. V.

George, M.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Gioia, G.

G. Gioia, M. Ortiz, "Delamination of compressed thin films," Adv. Appl. Mech. 33, 119-192 (1997).
[CrossRef]

Gottardi, E.

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Goudeau, P.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Grilhe, J.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Guan, Z. S.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Hadley, G. R.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Haugen, C. J.

Hawkins, A. R.

Hou, J. G.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Hutchinson, J. W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Jiang, L.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Johnson, S.G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Kasap, S. O.

Katagiri, T.

Kimerling, L. C.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Kolobov, A. V.

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Koyama, F.

F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).

Lavrinenko, A. V.

Lee, K.-R.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Lin, S.-Y.

Lo, S.-S.

Matsuura, Y.

McMullin, J. N.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Miura, T.

F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).

Miyaga, M.

Moon, M.-W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Nguyen, H. T.

Oh, K. H.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Ortiz, M.

G. Gioia, M. Ortiz, "Delamination of compressed thin films," Adv. Appl. Mech. 33, 119-192 (1997).
[CrossRef]

Pan, N.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Peroni, I.

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Perrin, B.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Peruzzi, A.

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Ponnampalam, N.

Povinelli, M.L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Sakurai, Y.

F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).

Sarro, P. M.

Scheuer, J.

Schmidt, H.

Tamura, N.

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Ventura, G.

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Wagner, T.

T. Wagner, P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

Wang, B.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Wang, C. M.

C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
[CrossRef]

Wang, G. J.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Wang, H.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Wang, M.-S.

Wang, Y. R.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Xiang, Y.

C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
[CrossRef]

Xiao, K.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Xu, Y.

Yariv, A.

Yarotsky, D. A.

Yeh, P.

P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Comm. 19, 427-430 (1976).
[CrossRef]

Yi, Y.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Yin, D.

Zeni, L.

Zhao, F.

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Zhu, D. B.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

Acta Mater.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Adv. Appl. Mech.

G. Gioia, M. Ortiz, "Delamination of compressed thin films," Adv. Appl. Mech. 33, 119-192 (1997).
[CrossRef]

Adv. Mater.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
[CrossRef]

Adv. Phys.

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Xiao, Z. S. Guan, G. J. Wang, L. Jiang, D. B. Zhu, Y. R. Wang, "Laser-induced wavy pattern formation in metal thin films," Appl. Phys. Lett. 85, 1934-1936 (2004).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Cryogenics

G. Ventura, E. Bianchini, E. Gottardi, I. Peroni, and A. Peruzzi, "Thermal expansion and thermal conductivity of Torlon at low temperatures," Cryogenics 39, 481-484 (1999).
[CrossRef]

Electronics and Communications in Japan

F. Koyama, T. Miura, Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electronics and Communications in Japan, Part 2 29, 9-19 (2006).

IEEE J. Sel. Top. Quantum Electron.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Int. J. Sol. Struct.

C. M. Wang, Y. Xiang, J. Chakrabarty, "Elastic/plastic buckling of thick plates," Int. J. Sol. Struct. 38, 8617-8640 (2001).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

T. Wagner, P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential application," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

Mech. Mat.

S. R. Choi, J. W. Hutchinson, and A. G. Evans, "Delamination of multilayer thermal barrier coatings," Mech. Mat. 31, 431-447 (1999).
[CrossRef]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Comm.

P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Comm. 19, 427-430 (1976).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

B. Audoly, "Stability of straight delamination blisters," Phys. Rev. Lett. 83, 4124-4127 (1999).
[CrossRef]

Proc. of SPIE

G. Camilo, "Mechanical properties of chalcogenide glasses - a review," Proc. of SPIE 4940, 222-229 (2003).
[CrossRef]

Science

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Thin Sol. Films

C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, J. Grilhe, "Evidence of plastic damage in thin films around buckling structures," Thin Sol. Films 469-470, 221-226 (2004).
[CrossRef]

F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J. G. Hou, "Buckle delamination of textured TiO2 thin films on mica," Thin Sol. Films 489, 221-228 (2005).
[CrossRef]

Other

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, "Femtosecond pulsed laser direct write production of nano- and microfluidic channels," Appl. Phys. Lett. 88, 183113-1-3 (2006).
[CrossRef]

W. J. Tropf, M. E. Thomas, and T. J. Harris, "Properties of crystals and glasses," in OSA Handbook of Optics, Vol. II, Devices, Measurements, and Properties (McGraw-Hill, New York, 1995).

"Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AI_10_APP_SAP.pdf.

L. B. Freund, S. Suresh, Thin Film Materials, Stress, Defect Formation, and Surface Evolution (Cambridge University Press, London, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the process used to form hollow waveguides. PAI is polyamide-imide and IG2 is Ge33As12Se55 glass. Inset: evolution of the compressive stress in a single IG2 layer on a silicon substrate versus the number of Ag layers (~25 nm thick) sequentially photodoped into the glass. The origin of the horizontal axis corresponds to the as-deposited film.

Fig. 2.
Fig. 2.

Images of a chip after the buckling process. (a) Low magnification photograph showing straight-sided buckles with nominal widths from 10 to 80 μm (in groups of 5), 80 to 20 μm and 80 to 10 μm tapers, sinusoidal s-bends, and rings with diameters 500 and 1000 μm. (b) SEM image of the cleaved facet of a nominally 20 μm wide hollow waveguide. Inset: higher magnification image of the upper mirror. (c)-(f) Optical microscope photographs of various features: (c) 500 μm diameter rings, (d) 20 and 40 μm straight-sided guides, with buckled alignment mark features (crosses and squares) in between, (e) s-bends in 40 μm wide guides, and (f) sections of two adjacent tapers (centre-to-centre spacing 250 μm). The defects visible in some of the images are discussed in the main text.

Fig. 3.
Fig. 3.

Buckling delamination of a single IG2 film. (a) Buckling atop a 1 mm diameter Ag circle. The movie file (0.57 MB) shows the real-time evolution of the buckling pattern as light induces photodoping of the underlying Ag into the IG2 film (and thus loss of adhesion of the IG2 film). Outside the Ag circle, the IG2 film remains well adhered to the polymer underlayer. (b) Buckling in a region where the Ag underlayer is continuous. The movie file (1.37 MB) shows real-time migration of the buckle pattern.

Fig. 4.
Fig. 4.

Analysis of the buckling process for the 4.5 period upper mirror. (a) Peak buckle height versus half-width (both in units of μm) according to the elastic buckling theory described in reference [30] (solid line). After photodoping and at ~160 °C, the bottom and remaining IG2 layers of the upper mirror were assumed to possess 200 and 100 MPa compressive stress, respectively (see Fig. 1). Stress in the PAI layers was assumed negligible. The markers show some experimentally measured buckle heights for each of the nominal half-widths studied. (b) SEM image of a nominally 10 μm wide buckle, showing sharp bending and some cracking near the buckle peripheries. The PAI layers appear somewhat stretched and deformed after cleaving, as discussed in the main text.

Fig. 5.
Fig. 5.

Microscope photographs of straight-sided buckles with: (a) 60 and (b) 80 μm base width. The color difference is due to the use of a different microscope filter in each case. The 60 μm features show some localized, small-scale wrinkling along the axis of the channels. The wrinkling is more extensive and significant for the 80 μm features.

Fig. 6.
Fig. 6.

Simulated reflectivity for various incidence angles (from normal) for (a) the bottom ODR (with IG2 and PAI layer thickness 145 nm and 290 nm, respectively) and (b) the Ag-doped top ODR (with Ag:IG2 and PAI layer thickness 150 and 290 nm, respectively, except for a 260 nm thick Ag:IG2 first layer). The mirrors were designed to provide overlapping omnidirectional stop bands near 1600 nm.

Fig. 7.
Fig. 7.

Results from a commercial finite difference mode solver. (a) The intensity distributions for the 3 lowest order TE modal solutions at 1600 nm. (b) The predicted radiation loss versus wavelength for the modes in part (a).

Fig. 8.
Fig. 8.

Results for guidance of TE polarized light in buckled waveguides with 40 μm base width. (a)-(c) Near field mode profiles: (a) fundamental mode at 1610 nm, (b) first order mode at 1610 nm, and (c) second order mode at 1586 nm. (d) Loss estimate from plot of scattered light versus distance along a straight, 40 μm wide waveguide. To ensure a conservative estimate, data points associated with a scattering defect near 2.4 mm were removed. (e) Scattered light (1595 nm wavelength) from a nominally 40 μm wide hollow waveguide (~ 5 mm in length) captured by an infrared camera. The sinusoidal s-bend is 500 μm long with a 250 μm offset. Light is coupled at left and the output facet is visible at right.

Fig. 9.
Fig. 9.

Wavelength dependence of TE polarized light guidance. (a) Simulated reflectivity of the lower ODR cladding, for TE polarized light at normal (green) and near-glancing (blue) incidence. (b) Simulated reflectivity of the upper ODR cladding, for normal incidence (green), and near-glancing incidence for TE (blue) and TM (red) light. (c) Measured transmission versus wavelength through a typical 40 μm wide hollow waveguide, ~ 5 mm in length.

Tables (1)

Tables Icon

Table 1. Low-order air-guided modes for a 40 μm wide buckled waveguide with raised cosine profile and peak height 2.5 μm, as predicted by a finite difference mode solver at 1600 nm wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ C = π 2 12 E 1 v 2 ( h b ) 2 ,
δ max = h 4 3 ( σ 0 σ C 1 ) .
α = 10 log 10 ( R M ) ,
α 5 λ D 2 log 10 ( R ) ,
α 2.5 λ D 2 log 10 ( R T R B ) ,

Metrics