Abstract

Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
    [Crossref]
  2. O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
    [Crossref]
  3. J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44,116,001 (2005).
    [Crossref]
  4. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45,034,301 (2006).
    [Crossref]
  5. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Heidelberg, Germany, 1975).
  6. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Belling-ham, WA, 2001).
    [Crossref]
  7. E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
    [Crossref]
  8. K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
    [Crossref]
  9. J. W. Goodman, Statistical Optics (Wiley Interscience, New York, NY, 2000).
  10. R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
    [Crossref]
  11. P. G. J. Barten, “Evaluation of subjective image quality with the square-root integral method,” J. Opt. Soc. Am. A 7,2024–2031 (1990).
    [Crossref]
  12. P. G. J. Barten, Contrast sensitivity of the human eye and its effects on image quality (SPIE Press Monograph, PM72, 1999).
    [Crossref]
  13. W. Wolfe and G. Zissis, The Infrared Handbook (IRIA ERIM, Ann Arbor, MI, 1993).
  14. R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
    [Crossref]
  15. C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
    [Crossref]
  16. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88,541–562 (1978).
  17. J. R. Dunphy and J. Kerr, “Scintillation measurements for large integrated path turbulence,” J. Opt. Soc. Am. 63,981–986 (1973).
    [Crossref]
  18. M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).
  19. V. A. Banakh and V. L. Mironov, Lidar in a Turbulence Atmosphere (Artech House, Boston, MA, 1987).
  20. L. C. Andrews and R. L. Phillips, “I-K distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2,160–163 (1985).
    [Crossref]
  21. D. H. Tofsted and S. G. O’Brien, “Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems,” in Targets and Backgrounds X: Characterization and Representation, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., vol. 5432 of Proc. SPIE, pp.160–171 (2004).
    [Crossref]
  22. J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
    [Crossref]
  23. A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).
  24. W. G. Tam and A. Zardecki, “Multiple scattering corrections to the Beer-Lambert Law. I: Open Detector,” Appl. Opt. 21,2405–2412 (1980).
    [Crossref]
  25. D. H. Tofsted, “Turbulence Simulation: On Phase and Deflector Screen Generation,” Tech. rep., U.S. Army Res. Lab. (2001).
  26. M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. A 13,1078–1082 (1996).
    [Crossref]
  27. D. H. Tofsted, “Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum,” Tech. rep., U.S. Army Res. Lab. (2000).
  28. T. von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U.S. 34,530–539 (1948).
    [Crossref]
  29. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
    [Crossref]
  30. E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).
  31. K. Weiss-Wrana, “Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions,” in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., vol. 5891 of Proc. SPIE, pp.58,910D–1–58,910D–12 (2005).

2006 (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45,034,301 (2006).
[Crossref]

2005 (3)

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44,116,001 (2005).
[Crossref]

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

K. Weiss-Wrana, “Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions,” in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., vol. 5891 of Proc. SPIE, pp.58,910D–1–58,910D–12 (2005).

2004 (3)

E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
[Crossref]

R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
[Crossref]

D. H. Tofsted and S. G. O’Brien, “Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems,” in Targets and Backgrounds X: Characterization and Representation, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., vol. 5432 of Proc. SPIE, pp.160–171 (2004).
[Crossref]

2003 (1)

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

2001 (1)

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

2000 (2)

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
[Crossref]

D. H. Tofsted, “Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum,” Tech. rep., U.S. Army Res. Lab. (2000).

1999 (1)

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

1996 (1)

1990 (1)

1985 (1)

1980 (1)

1978 (1)

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88,541–562 (1978).

1976 (1)

J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
[Crossref]

1973 (1)

1972 (1)

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

1948 (1)

T. von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U.S. 34,530–539 (1948).
[Crossref]

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45,034,301 (2006).
[Crossref]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, “I-K distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2,160–163 (1985).
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Belling-ham, WA, 2001).
[Crossref]

Banakh, V. A.

V. A. Banakh and V. L. Mironov, Lidar in a Turbulence Atmosphere (Artech House, Boston, MA, 1987).

Barnard, K. J.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

Barten, P. G. J.

P. G. J. Barten, “Evaluation of subjective image quality with the square-root integral method,” J. Opt. Soc. Am. A 7,2024–2031 (1990).
[Crossref]

P. G. J. Barten, Contrast sensitivity of the human eye and its effects on image quality (SPIE Press Monograph, PM72, 1999).
[Crossref]

Belen’kii, M. S.

Bolander, G.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Bowman, T.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
[Crossref]

Busck, J.

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44,116,001 (2005).
[Crossref]

Cote, O. R.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Heidelberg, Germany, 1975).

Devitt, N.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

Driggers, R.

R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
[Crossref]

Driggers, R. G.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
[Crossref]

Driggers, R. N.

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

Dunphy, J. R.

Espinola, R. L.

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

Feit, M. J.

J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
[Crossref]

Fleck, J. A.

J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley Interscience, New York, NY, 2000).

Gracheva, M. E.

M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).

Groenwall, C. A.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Gurvich, A. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).

Halford, C.

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

Halford, C. E.

E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
[Crossref]

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
[Crossref]

Hill, R. J.

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88,541–562 (1978).

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Belling-ham, WA, 2001).
[Crossref]

Izumi, Y.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

Jacobs, E.

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
[Crossref]

Jacobs, E. L.

E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
[Crossref]

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
[Crossref]

Kaimal, J. C.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

Kasharov, S. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).

Kerr, J.

Klager, G.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
[Crossref]

Kopeika, N. S.

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

Krapels, K.

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

Letalick, D.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Milton, A. F.

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
[Crossref]

Mironov, V. L.

V. A. Banakh and V. L. Mironov, Lidar in a Turbulence Atmosphere (Artech House, Boston, MA, 1987).

Morris, J. R.

J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
[Crossref]

O’Brien, S. G.

D. H. Tofsted and S. G. O’Brien, “Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems,” in Targets and Backgrounds X: Characterization and Representation, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., vol. 5432 of Proc. SPIE, pp.160–171 (2004).
[Crossref]

Olsson, H.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, “I-K distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2,160–163 (1985).
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Belling-ham, WA, 2001).
[Crossref]

Pokasov, V. V.

M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).

Robinson, A. L.

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).

Steinvall, O. K.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Tam, W. G.

Tofsted, D.

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

Tofsted, D. H.

D. H. Tofsted and S. G. O’Brien, “Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems,” in Targets and Backgrounds X: Characterization and Representation, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., vol. 5432 of Proc. SPIE, pp.160–171 (2004).
[Crossref]

D. H. Tofsted, “Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum,” Tech. rep., U.S. Army Res. Lab. (2000).

D. H. Tofsted, “Turbulence Simulation: On Phase and Deflector Screen Generation,” Tech. rep., U.S. Army Res. Lab. (2001).

Vollmerhausen, R.

R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
[Crossref]

Vollmerhausen, R. H.

E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
[Crossref]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

von Karman, T.

T. von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U.S. 34,530–539 (1948).
[Crossref]

Weiss-Wrana, K.

K. Weiss-Wrana, “Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions,” in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., vol. 5891 of Proc. SPIE, pp.58,910D–1–58,910D–12 (2005).

Wolfe, W.

W. Wolfe and G. Zissis, The Infrared Handbook (IRIA ERIM, Ann Arbor, MI, 1993).

Wyngaard, J. C.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

Zardecki, A.

Zissis, G.

W. Wolfe and G. Zissis, The Infrared Handbook (IRIA ERIM, Ann Arbor, MI, 1993).

Appl. Opt. (1)

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, and M. J. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10,129–160 (1976).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Eng. (5)

R. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43,2806–2818 (2004).
[Crossref]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42,738–746 (2003).
[Crossref]

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44,116,001 (2005).
[Crossref]

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45,034,301 (2006).
[Crossref]

K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40,1906–1913 (2001).
[Crossref]

Proc. Natl. Acad. Sci. U.S. (1)

T. von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U.S. 34,530–539 (1948).
[Crossref]

Proc. SPIE (5)

E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, “Beam scintillation effects on identification performance with active imaging systems,” in Electro-Optical and Infrared Systems: Technology and Applications II, R. G. Driggers and D. A. Huckridge, eds., vol. 5987 of Proc. SPIE, pp.598,703–1–598,703–11 (2005).

K. Weiss-Wrana, “Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions,” in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., vol. 5891 of Proc. SPIE, pp.58,910D–1–58,910D–12 (2005).

D. H. Tofsted and S. G. O’Brien, “Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems,” in Targets and Backgrounds X: Characterization and Representation, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., vol. 5432 of Proc. SPIE, pp.160–171 (2004).
[Crossref]

A. F. Milton, G. Klager, and T. Bowman, “Low cost sensors for UGVs,” in Unmanned Ground Vehicle Technology II, G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., vol. 4024 of Proc. SPIE, pp.180–191 (2000).
[Crossref]

E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, “Modeling active imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XV, G. C. Holst, ed., vol. 5407 of Proc. SPIE, pp.201–210 (2004).
[Crossref]

Proc. SPIE, (1)

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds., vol. 3707 of Proc. SPIE, pp.432–448 (1999).
[Crossref]

Q. J. Roy. Met. Soc. (1)

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. Roy. Met. Soc. 98,563–589 (1972).
[Crossref]

Tech. rep., U.S. Army Res. Lab. (1)

D. H. Tofsted, “Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum,” Tech. rep., U.S. Army Res. Lab. (2000).

Other (11)

D. H. Tofsted, “Turbulence Simulation: On Phase and Deflector Screen Generation,” Tech. rep., U.S. Army Res. Lab. (2001).

A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).

J. W. Goodman, Statistical Optics (Wiley Interscience, New York, NY, 2000).

J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Heidelberg, Germany, 1975).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Belling-ham, WA, 2001).
[Crossref]

P. G. J. Barten, Contrast sensitivity of the human eye and its effects on image quality (SPIE Press Monograph, PM72, 1999).
[Crossref]

W. Wolfe and G. Zissis, The Infrared Handbook (IRIA ERIM, Ann Arbor, MI, 1993).

C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, “Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model,” submitted to Opt. Eng. (2007).
[Crossref]

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88,541–562 (1978).

M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).

V. A. Banakh and V. L. Mironov, Lidar in a Turbulence Atmosphere (Artech House, Boston, MA, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Operational concept and implementation of an active imaging system.

Fig. 2.
Fig. 2.

Relationship between system CTF, limiting frequency, and supra-threshold contrast.

Fig. 3.
Fig. 3.

Illustration of the radiometric laser model.

Fig. 4.
Fig. 4.

Speckle from a target board at 1 kilometer as imaged by a laser range gated imager under conditions with virtually no turbulence.

Fig. 5.
Fig. 5.

Propagation through turbulence.

Fig. 6.
Fig. 6.

Test setup.

Fig. 7.
Fig. 7.

Example imagery showing scintillation patterns varying with C2 n . The images were taken at measured C2 n values of (Left) 1.22E-12, (Center) 1.41E-13, and (Right) 1.11E-14 m2/3.

Fig. 8.
Fig. 8.

Scintillated beam profiles generated by simulation: no scintillation, C2 n =1E-14,C2 n =3.16E-14, and C2 n =1E-13.

Fig. 9.
Fig. 9.

9(a) Speckled images: incoherent, 1 shot, 2 shot average, and 8 shot average. 9(b) Comparison of model predictions and experimental results. The TTPF explains approximately 94% of the variance in the measured data.

Fig. 10.
Fig. 10.

10(a) Scintillated images: unscintillated, C2 n =1E-14, C2 n =3.16E-14, and C2 n =1E-13. 10(b) Comparison of model predictions and experimental results. The TTPF explains approximately 89% of the variance in the measured data.

Fig. 11.
Fig. 11.

11(a) Trade study comparing aperture size vs. C2 n on range performance. 11(b) Effect of frame averaging vs. turbulence strength on range performance.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

CTF sys ( f ) = CTF Eye ( f ) H sys ( f ) 1 + κ 2 σ 2 ( f ) L 2
H atmospheric ( f ) short = e 57.4 a C n 2 R λ 1 3 f 5 3 ( 1 u ( f λ D 0 ) 1 3 )
σ 2 ( f ) = S n ( ξ ) H Post ( ξ ) H Per ( ξ , f ) 2 d ξ
H Per ( ξ , f c ) = exp [ 2.2 log 2 ( ξ f c ) ]
TTP = f lo f limit C t CTF sys ( f ) d f [ cyc mrad ]
CTF sys ( f ) f lo , f limit = C t f limit > f lo
V ( R ) = 1000 ( A t R ) TTP [ cyc ]
P task ( R ) = ( V ( R ) V 50 ( task ) ) E 1 + ( V ( R ) V 50 ( task ) ) E
E = 1.51 + 0.24 ( V ( R ) V 50 )
P R x = ( P T x π R 2 ( tan ( ϕ las 2 ) ) 2 ) ( A det f 2 ) ( 1 π ) ( π D 0 2 4 ) τ atm 2 τ R x
σ speckle 2 ( f ) = 1 N S speckle ( ξ ) H Post ( ξ ) H Det ( ξ ) H Per ( ξ , f ) 2 d ξ
S speckle ( f ) = L H Optics ( f ) 0 H Optics ( ξ ) d ξ
C speckle = σ I I
K = imager pixel size l c / sin α
B ( ρ ) = exp [ B ln x ( ρ ) + B ln y ( ρ ) ] 1 ,
B ln x ( ρ ) = K 0 1 0 η 11 6 e η / η x J 0 ( ρ ξ k η L ) { 1 cos [ η ξ ( 1 ξ ) ] } , d η d ξ
B ln x ( ρ ) = K 0 1 0 ( η + η y ) 11 6 J 0 ( ρ ξ k η L ) { 1 cos [ η ξ ( 1 ξ ) ] } , d η d ξ
K = 2.65 β 0 2
β 0 2 = 0.4 σ 1 2
σ 1 2 = 1.23 C n 2 k 7 6 L 11 6
η x = 8.56 1 + 0.19 σ 1 12 5
η y = 9 ( 1 + 0.23 σ 1 12 5 )
σ scintillation 2 ( f ) = S scintillation ( ξ ) H Post ( ξ ) H Per ( ξ , f ) 2 d ξ .
p 0 ( r ) = A p exp ( r 2 w 0 2 ) = exp ( θ 2 θ 0 2 ) n 0 ( r θ ) d θ
n 0 ( r , θ ) = A n exp ( r 2 v 0 2 ) exp ( ik r θ )
ϕ ( r ) = ( kc / n 0 ) δτ ( r )
T lm = ( 2 π ) 3 Δ XYc 2 G lm Φ n ( 2 π l / X , 2 π m / Y , 0 )
Φ n ( κ x , κ y , κ z ) = Φ n ( κ ) = Φ n ( κ ) = Φ I ( κ , l o ) + Φ X ( κ , L o ) Φ K ( κ )
Φ I ( κ , l o ) = 0.033 C n 2 κ 11 3 F ( κ l o / 1.412 )
F ( x ) = 2.2 J ( x / 7.5 ) 1.2 J ( x / 2.5 )
Φ X ( κ , L o ) = 0.033 C n 2 i = 1,2 a i X ( κ , i )

Metrics