Abstract

We report the generation of white light from a picosecond pump by efficient four-wave mixing processes. A 530 nm green source based on a frequency-doubled Yb-doped fiber laser generates strong red and blue sidebands in the secondary cores of a holey fiber with large air-filling factor. Phase matching is attributed to birefringence within the sub-micrometer-sized secondary cores induced by non-symmetric deformation during the fiber drawing.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of multiwatt, broadband continua in holey fibers

P. A. Champert, S. V. Popov, and J. R. Taylor
Opt. Lett. 27(2) 122-124 (2002)

Supercontinuum generation at 1.06µm in holey fibers with dispersion flattened profiles

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson
Opt. Express 14(10) 4445-4451 (2006)

Efficient generation of blue light in high-delta microstructure fibers

Lingling Ji, Peixiang Lu, Wei Chen, Zhenyu Yang, Nengli Dai, Yuhua Li, Zuowen Jiang, and Jinyan Li
J. Opt. Soc. Am. B 25(4) 513-517 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30,3132–3134 (2005).
    [Crossref] [PubMed]
  2. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19,753–764 (2002).
    [Crossref]
  3. P. -A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12,4366–4371 (2004).
    [Crossref] [PubMed]
  4. V. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25,25–27 (2000).
    [Crossref]
  5. G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
    [Crossref]
  6. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12,2864–2869 (2004).
    [Crossref] [PubMed]
  7. M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, “Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser,” Opt. Express 13,8547–8554 (2005).
    [Crossref] [PubMed]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19,765–771 (2002).
    [Crossref]
  9. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29,1921–1923 (2004).
    [Crossref] [PubMed]
  10. P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).
  11. N. A. Mortensen and M. D. Nielsen, “Modeling of realistic cladding structures for air-core photonic bandgap fibers,” Opt. Lett. 29,349–351 (2004).
    [Crossref] [PubMed]
  12. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13,3728–3736 (2005).
    [Crossref] [PubMed]
  13. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Transactions on Microwave Theory and Techniques MTT- 23,421–429 (1975).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA, 2001).
  15. A. Tonello, S. Pitois, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, and C. De Angelis, “Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber,” Opt. Express 14,397–404 (2006).
    [Crossref] [PubMed]
  16. R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31,1379–1381 (2006).
    [Crossref] [PubMed]
  17. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
    [Crossref]

2006 (2)

2005 (4)

2004 (4)

2002 (2)

2000 (1)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

1975 (1)

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Transactions on Microwave Theory and Techniques MTT- 23,421–429 (1975).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA, 2001).

Arisholm, G.

Birks, T.

Broderick, N. G. R.

Brunner, F.

Champert, P. -A.

Chau, A. H. L.

Chen, J. S. Y.

Coen, S.

Conforti, M.

Couderc, V.

De Angelis, C.

Derra, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Dudley, J. M.

Dupriez, P.

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Eggleton, B. J.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Février, S.

Finazzi, V.

Fischer, E.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Froehly, C.

Gawith, C.

Giese, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Grossard, N.

Harvey, J. D.

Hechtfischer, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Heusler, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Innerhofer, E.

Ito, H.

Jeong, Y.

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Joly, N. Y.

Keller, U.

Kitamura, K.

Kivistö, S.

Knight, J. C.

Koerber, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Kruhlak, R. J.

Kurimura, S.

Labonté, L.

Leonhardt, R.

Leon-Saval, S.

Leproux, P.

Locatelli, A.

Maillotte, H.

Malinowski, A.

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Marchese, S. V.

Martynkien, T.

Mason, M.

McIsaac, P. R.

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Transactions on Microwave Theory and Techniques MTT- 23,421–429 (1975).
[Crossref]

Millot, G.

Moench, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Monro, T. M.

Mortensen, N. A.

Murdoch, S. G.

Nérin, P.

Nielsen, M. D.

Niemann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Nilsson, J.

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Noertemann, F.-C.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Okhotnikov, O.

Paschotta, R.

Pekarski, P.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Pitois, S.

Poletti, F.

Pollmann-Retsch, J.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Popov, S. V.

Provino, L.

Ranka, V. J. K.

Richardson, D. J.

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13,3728–3736 (2005).
[Crossref] [PubMed]

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Ritz, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Roy, P.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Russel, P. St. J.

Russell, P. St. J.

Rusu, M.

Sahu, J. K.

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Stentz, A. J.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Südmeyer, T.

Taylor, J. R.

Tombelaine, V.

Tonello, A.

Travers, J. C.

Tse, V.

Urbanczyk, W.

Usami, T.

Wabnitz, S.

Wadsworth, W.

Wadsworth, W. J.

Weichmann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Windeler, R. S.

Wojcik, J.

Wong, G. K. L.

IEEE Transactions on Microwave Theory and Techniques (1)

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Transactions on Microwave Theory and Techniques MTT- 23,421–429 (1975).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38,2995–3010 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. B (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA, 2001).

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency doubled, single-mode, linearly polarized fiber laser,” in Conference on Lasers and Electro-Optics (CLEO 2006), paper CThJ1, Long Beach, USA (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental arrangement for the generation of RGB in a single secondary core of a holey fiber. LBO: Lithium Triborate (LiB3O5) crystal, λ/2: half-wave plate at respective wavelengths.

Fig. 2.
Fig. 2.

Typical SEM images of the fibers used for RGB generation.

Fig. 3.
Fig. 3.

Normalized output spectra obtained from fibers A-E, and corresponding dispersion profiles calculated for a single secondary core as shown in Fig. 2.

Fig. 4.
Fig. 4.

Left: Diffracted picture of the RGB components generated by fiber D. Right: The fiber output observed in the green showing the location of the single excited core.

Fig. 5.
Fig. 5.

Idealized structure used in the simulations: single-core (a) and double-core (b). In this example Λ = 3.66 μm, d/Λ = 0.935, rc/d = 0.25. (c) High magnification SEM image of fiber C, and (d) detail of the simulated profile.

Fig. 6.
Fig. 6.

Simulation results for the structure in Fig. 5(d): Effective indices of the first 12 modes (left); Mode intensity and polarization distribution of the first 4 modes at 530 nm (right).

Fig. 7.
Fig. 7.

Phase matching curves for the modes of Fig. 6 (corresponding to fiber C): The pump is in mode M1, while signal and idler are in the orthogonally polarized mode M2. The yellow band refers to the pump used in the experiments.

Fig. 8.
Fig. 8.

Simulated birefringence at 530 nm when a deformation (linear scaling) is applied along the x and y directions to a single core with structural parameters corresponding to 3 of the fibers under examination.

Metrics