Abstract

We report on an optically-based technique that provides an efficient way to track static and dynamic strain by locking the frequency of a diode laser to a fiber Bragg-grating Fabry-Pérot cavity. For this purpose, a suitable optical frequency discriminator is generated exploiting the fiber natural birefringence and that resulting from the gratings inscription process. In our scheme, a polarization analyzer detects dispersive-shaped signals centered on the cavity resonances without need for additional optical elements in the resonator or any laser-modulation technique. This method prevents degradation of the resonator quality and maintains the configuration relatively simple, demonstrating static and dynamic mechanical sensing below the picostrain level.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings," Opt. Lett. 23, 1930-1932 (1998).
    [CrossRef]
  2. A. Arie, B. Lissak, and M. Tur, "Static Fiber-Bragg Grating strain sensing using frequency-locked lasers," J. Lightwave Technol. 17, 1849-1855 (1999).
    [CrossRef]
  3. G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005).
    [CrossRef] [PubMed]
  4. J. H. Chow, I. C. Littler, G. de Vine, D. E. McClelland, M. B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," J. Lightwave Technol. 23, 1881-1889 (2005).
    [CrossRef]
  5. L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi, "Demodulation of Fiber Bragg Grating Sensors based on dynamic tuning of a multimode Laser Diode," Appl. Opt. 38, 4751-4759 (1999).
    [CrossRef]
  6. X. Wan and H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors," Opt. Lett. 27, 1388-1390 (2002).
    [CrossRef]
  7. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. Littler, "Demonstration of a passive subpicostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
    [CrossRef] [PubMed]
  8. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
    [CrossRef]
  9. F. Maystre and R. Dandliker, "Polarimetric fiber optical sensor with high sensitivity using a Fabry-Perot structure," Appl. Opt. 28, 1995-2000 (1989).
    [CrossRef] [PubMed]
  10. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
    [CrossRef] [PubMed]
  11. A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
    [CrossRef] [PubMed]
  12. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
    [CrossRef] [PubMed]
  13. G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
    [CrossRef]
  14. A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, "Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 105," Opt. Lett. 26, 1562-1564 (2001).
    [CrossRef]
  15. R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
    [CrossRef]
  16. A. D. White, "Frequency stabilization of gas lasers," IEEE J. Quantum Electron. QE-1, 349-357 (1965).
    [CrossRef]
  17. T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  19. M. Zhu and J. L. Hall, "Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer," J. Opt. Soc. Am. B 10, 802-816 (1993).
    [CrossRef]
  20. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, "Diode laser with a 1 Hz linewidth," Opt. Lett. 31, 736-738 (2006).
    [CrossRef] [PubMed]
  21. H. R. Telle and U. Sterr, in Frequency Measurement and Control, A. N. Luiten ed., (Spinger-Verlag, Berlin Heidelberg 2001).
  22. M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
    [CrossRef]
  23. R. J. Forster and N. Langford, "Polarization spectroscopy applied to the frequency stabilization of rare-earth-doped fiber lasers: a numerical and experimental demonstration," J. Opt. Soc. Am. B 14, 2083-2090 (1997).
    [CrossRef]
  24. N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
    [CrossRef]
  25. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994).
    [CrossRef]
  26. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of Optical Fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
    [CrossRef]
  27. G. A. Ball, G. Meltz, and W. W. Morey, "Polarimetric heterodyning Bragg-grating fiber-laser sensor," Opt. Lett. 18, 1976-1978 (1993).
    [CrossRef] [PubMed]
  28. B. J. Eggleton and R. E. Slusher, in Nonlinear Photonic Crystals, B. J. Eggleton and R. E. Slusher eds., (Spinger-Verlag, Berlin Heidelberg 2003).
  29. S. T. Oh, W. Han, U. Paek, and Y. Chung, "Discrimination of temperature and strain with a single FBG based on the birefringence effect," Opt. Express 12, 724-729 (2004).
    [CrossRef] [PubMed]
  30. J. E. Sipe, L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A 11, 1307-1320 (1994).
    [CrossRef]
  31. Corning, "SMF-28 Product Information Sheet," (One Riverfront Plaza, Corning, N.Y. 14831, 2001).
  32. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
    [CrossRef] [PubMed]
  33. I. C. M. Littler, T. Grujic, and B. J. Eggleton, "Photothermal effects in fiber Bragg gratings," Appl. Opt.,  45, 4679-4685 (2006).
    [CrossRef] [PubMed]
  34. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection," Opt. Lett. 18, 72-74 (1993).
    [CrossRef] [PubMed]

2006

2005

2004

2002

2001

2000

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

1999

1998

1997

1996

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

1995

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

1994

J. E. Sipe, L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A 11, 1307-1320 (1994).
[CrossRef]

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994).
[CrossRef]

1993

1992

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

1989

1984

N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1980

T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

1973

R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
[CrossRef]

1965

A. D. White, "Frequency stabilization of gas lasers," IEEE J. Quantum Electron. QE-1, 349-357 (1965).
[CrossRef]

Abramovici, A. A.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Althouse, W.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Arie, A.

Ball, G. A.

Barger, R. L.

R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
[CrossRef]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Bergquist, J. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Berkoff, T. A.

Champenois, C.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Chow, J. H.

Chung, Y.

Couillaud, B.

T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Dandliker, R.

Dandridge, A.

N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
[CrossRef]

de Angelis, M.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

De Natale, P.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005).
[CrossRef] [PubMed]

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

de Vine, G.

Diatzikis, E. V.

Dossou, K.

Drever, R. P.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994).
[CrossRef]

Farahi, F.

Ferraro, P.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005).
[CrossRef] [PubMed]

Ferreira, L. A.

Fontaine, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Forster, R. J.

Fort, C.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

Frigo, N. J.

N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
[CrossRef]

Gagliardi, G.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005).
[CrossRef] [PubMed]

Gray, M. B.

Grujic, T.

Grünert, J.

Gursel, Y.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Hagel, G.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Hall, J. H.

R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
[CrossRef]

Hall, J. L.

M. Zhu and J. L. Hall, "Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer," J. Opt. Soc. Am. B 10, 802-816 (1993).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Han, W.

Hansch, T. W.

T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Helmcke, J.

Hemmerich, A.

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Houssin, M.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Itano, W. M.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Kawamura, S.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Kersey, A. D.

Kimble, H. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

Knoop, M.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

Langford, N.

LaRochelle, S.

Lissak, B.

Littler, I. C.

Littler, I. C. M.

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

Martijn de Sterke, C.

Maystre, F.

McClelland, D. E.

Meltz, G.

Mensing, F.

Mizrahi, V.

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994).
[CrossRef]

Modugno, G.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

Morey, W. W.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Oh, S. T.

Paek, U.

Poladian, L.

Prevedelli, M.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

Raab, F.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Rafac, R. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Ritter, S.

Salza, M.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005).
[CrossRef] [PubMed]

Santos, J. L.

Schoof, A.

Sheard, B. S.

Shoemaker, D.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Sipe, J. E.

Sorem, M. S.

R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
[CrossRef]

Spero, R.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Sterr, U.

Stoehr, H.

Taylor, H. F.

Thorne, K. S.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Tino, G. M.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

Tur, M.

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

Tveten, A. B.

N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
[CrossRef]

Vedel, F.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Vedel, M.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Vogt, R.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Wan, X.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Weiss, R.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Whitcomb, S.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

White, A. D.

A. D. White, "Frequency stabilization of gas lasers," IEEE J. Quantum Electron. QE-1, 349-357 (1965).
[CrossRef]

Wineland, D. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Zhu, M.

Zimmermann, C.

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

Zuker, M.

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Appl. Phys. Lett.

R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973).
[CrossRef]

Electron. Lett.

N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984).
[CrossRef]

IEEE J. Quantum Electron.

A. D. White, "Frequency stabilization of gas lasers," IEEE J. Quantum Electron. QE-1, 349-357 (1965).
[CrossRef]

J. Lightwave Technol.

J. Opt. A

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006).
[CrossRef]

J. Opt. Soc. Am.

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005).
[CrossRef]

Science

A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992).
[CrossRef] [PubMed]

Other

H. R. Telle and U. Sterr, in Frequency Measurement and Control, A. N. Luiten ed., (Spinger-Verlag, Berlin Heidelberg 2001).

B. J. Eggleton and R. E. Slusher, in Nonlinear Photonic Crystals, B. J. Eggleton and R. E. Slusher eds., (Spinger-Verlag, Berlin Heidelberg 2003).

Corning, "SMF-28 Product Information Sheet," (One Riverfront Plaza, Corning, N.Y. 14831, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a). Numerical response of the reflected signal I R,⊥ vs. the normalized detuning ratio for different mismatch angles δ (λ/4 set at 45°; nb,x = 1.468 δny =δny =1.7×10−4; σ x = σ y =0 ; Δ n = nb,y nb,x =1×10−6 for silica). b) The simulation is repeated for the difference of polarization components I R,∥I R,⊥. In c) and d) I R,⊥ and the difference I R,∥I R,⊥, respectively, are calculated for δnx = δny =2×10−4 with the same parameters as in a).

Fig. 2.
Fig. 2.

The difference of PBS signals is evaluated for different grating-inscription induced birefringence: (a) the background refractive index variations are equal, σ x = σ y = 1×10−5 and the profiles are symmetric like in Fig. 1(b); b) here the situation (a) is shown in an extended spectral window where orthogonally-polarized eigenmodes can be both observed within a FSR; c)I R,∥I R,⊥ calculated for σ x =0.5×10−5 and σ y =0.; d) (σ x =0 and σ y , =0.5×10−5; e) the difference signals is plotted for σx =1×10−5 and σy =3×10−5; f) the previous case is represented in an extended window.

Fig. 3.
Fig. 3.

Experimental set-up. P: polarizer; FC: fiber circulator; PBS: polarizing cube beamsplitter; PZT: piezo-electric transducer; PD: photodiode; D: differential amplifier; FP: fiber port; SMF: single-mode fiber; PMF: polarization-maintaining fiber.

Fig. 4.
Fig. 4.

Laser scan showing the differential reflection lineshape of one single cavity eigenmode, at variable input angles, detected after the PBS analyzer and the amplifier D.

Fig. 5.
Fig. 5.

Transmission (blue trace) and differential reflection (green) simultaneously detected for fast and slow cavity eigenmodes.

Fig. 6.
Fig. 6.

Example of laser frequency stabilization for interrogation of the fiber cavity. (a). Feedback action on the cavity transmission (upper curves) and differential reflection (lower curves) for a weak closed-loop gain (blue lines) and a free-running laser (red lines) while the frequency is being scanned. (b). The maximum frequency-noise suppression can be appreciated from FFT spectrum of the error signal in the tightly-locked operation (red) with respect to the unlocked case (black), with a 500-Hz resolution (averaged over several acquisitions). The sharp peak around 16 kHz is apparently due to electrical pick-up. An auto-oscillation with significant noise increase occurs above 40 kHz, setting the upper limit of the lock bandwidth. The inset shows a detail of the frequency-noise spectrum on a kHz scale (10-Hz resolution).

Fig. 7.
Fig. 7.

Detection of dynamic strain in the FBG cavity. The plot corresponds to the FFT of the correction signal in the acoustic range for a 0.7-nε rms deformation at 1.24 kHz (20-spectra average). The dotted line at 0.77 pε/√Hz represents the noise floor.

Fig. 8.
Fig. 8.

(a). The response for a low frequency signal (2.44 Hz) is shown for a rms amplitude of 0.4 nε. The dotted line corresponds to a strain-equivalent noise-limited sensitivity of 42 pε/vHz (5-spectra average). (b). Detection of quasi-static strain in the FBG cavity vs. time (15 s), for 12-ne steps applied to the fiber via the PZT.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρ i = r 12 , i 1 exp ( 2 j k n eff , i L ) 1 r 12 , i 2 exp ( 2 j k n eff , i L )
τ i = ( 1 r 12 , i 2 ) exp ( 2 jk n eff , i L ) 1 r 12 , i 2 exp ( 2 jk n eff , i L ) .
n eff , i = ( Δ i + σ i ) 2 κ i 2 ,
Z i = ( Δ i + σ i κ i Δ i + σ i + κ i ) 1 2 .
R i = ρ , i 1 + exp j ( χ i + 2 k n eff , i L d ) 1 ρ i 2 exp ( j 2 k n eff , i L d ) ,
χ i = arctan ( 1 + r 12 , i 2 1 r 12 , i 2 tan ( k n eff , i L ) ) .
I R , ( λ ) = P ( λ 4 ) ( θ ) R ( λ ) ( θ ) E inc 2
I R , ( λ ) = P ( λ 4 ) ( θ ) R ( λ ) ( θ ) E inc 2 ,
I R , = 1 2 R x cos ( α θ ) j sin ( α θ ) R y 2
I R , = 1 2 R y sin ( α θ ) j cos ( α θ ) R x 2 ,
I R , I R , = 1 2 sin ( 2 ( α θ ) ) ( R x * R y R x R y * ) .

Metrics