Abstract

A high-resolution light intensity spectrum analyzer technique to derive the RF modulation spectrum of optical signals is presented and experimentally confirmed. It uses the XPM nonlinear effect in a dispersion shifted fiber to obtain the light intensity spectrum, and a Brillouin optical filtering method to implement the high resolution spectrometric analysis. Measured RF spectra of PRBS modulated optical signals at 2.5 Gb/s and 10 Gb/s are presented and compared with their corresponding ones obtained in the electrical detection domain to confirm the capabilities of the method. Influence of fiber electrostriction effect is measured and analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-Po Ho and J. M. Kahn, "Spectrum of externally modulated optical signals," J. Lightwave Technol. 22, 658-663 (2004).
    [CrossRef]
  2. A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
    [CrossRef]
  3. C. Dorrer and D. N. Maywar, "RF spectrum analysis of optical signals using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
    [CrossRef]
  4. J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
    [CrossRef]
  5. S. H. Lee, K. K. Chow and C. Shu, "Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion," Opt. Express 13,1710-1715 (2005).
    [CrossRef] [PubMed]
  6. Q. Lin and G. P. Agrawal, "Effects of polarization-mode dispersion on cross-phase modulation in dispersion-managed wavelength-division-multiplexed systems," J. Lightwave Technol. 22, 977-987 (2004).
    [CrossRef]
  7. A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
    [CrossRef]
  8. E. L. Buckland and R. W. Boyd, "Electrostrictive contribution to the intensity-dependent refractive index of optical fibers," Opt. Lett. 21, 1117-1119 (1996).
    [CrossRef] [PubMed]
  9. C. Heras, J. Subías, J. Pelayo and F. Villuendas, "Direct measurement of frequency and polarization dependences of cross-phase modulation in fibers from high-resolution optical spectra," Opt. Lett. 31, 14-16 (2006).
    [CrossRef] [PubMed]

2006

2005

S. H. Lee, K. K. Chow and C. Shu, "Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion," Opt. Express 13,1710-1715 (2005).
[CrossRef] [PubMed]

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

2004

1999

A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
[CrossRef]

1998

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

1996

Agrawal, G. P.

Andonovic, I.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

Boyd, R. W.

Buckland, E. L.

Chow, K. K.

Cornwell, W. D.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

Dorrer, C.

C. Dorrer and D. N. Maywar, "RF spectrum analysis of optical signals using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

Fellegara, A.

A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
[CrossRef]

Heras, C.

C. Heras, J. Subías, J. Pelayo and F. Villuendas, "Direct measurement of frequency and polarization dependences of cross-phase modulation in fibers from high-resolution optical spectra," Opt. Lett. 31, 14-16 (2006).
[CrossRef] [PubMed]

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Lee, S. H.

Lin, Q.

Martinelli, M.

A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
[CrossRef]

Maywar, D. N.

C. Dorrer and D. N. Maywar, "RF spectrum analysis of optical signals using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

Melloni, A.

A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
[CrossRef]

Pelayo, J.

C. Heras, J. Subías, J. Pelayo and F. Villuendas, "Direct measurement of frequency and polarization dependences of cross-phase modulation in fibers from high-resolution optical spectra," Opt. Lett. 31, 14-16 (2006).
[CrossRef] [PubMed]

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Pellejer, E.

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Shalom, H.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

Shu, C.

Subias, J.

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Subías, J.

Tur, M.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

Villuendas, F.

C. Heras, J. Subías, J. Pelayo and F. Villuendas, "Direct measurement of frequency and polarization dependences of cross-phase modulation in fibers from high-resolution optical spectra," Opt. Lett. 31, 14-16 (2006).
[CrossRef] [PubMed]

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Zadok, A.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

Fiber Integr. Opt.

A. Melloni, M. Martinelli and A. Fellegara, "Frequency characterization of the nonlinear refractive index in optical fiber," Fiber Integr. Opt. 18, 1-4 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

J. Subias, J. Pelayo, F. Villuendas, C. Heras and E. Pellejer, "Very high resolution Optical Spectrometry by stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Measurement set-up

Fig. 2.
Fig. 2.

Measured optical spectra for the PRBS modulated optical signal at 2.5 Gb/s. (a) SUT, b) Probe wave: continuous probe wave (orange curve) and XPM-broadened probe wave (red curve). The original SUT optical spectrum (dashed grey curve) is superimposed with a convenient wavelength displacement for its better comparison.

Fig. 3.
Fig. 3.

RF spectra for the PRBS modulated optical signal at 2.5 Gb/s. Comparison between the measurement obtained in the pure optical domain by using the high resolution LISA method (red curve) with that one obtained in the electrical domain by using a conventional electrical spectrum analyzer (grey curve).

Fig. 4.
Fig. 4.

Measured optical spectra for the PRBS modulated optical signal at 10 GB/s. (a) SUT (b) Probe wave: continuous probe wave (orange) and XPM-broadened probe wave (red). The original SUT optical spectrum (dashed grey curve) is superimposed with a convenient wavelength displacement for its better comparison

Fig. 5.
Fig. 5.

RF spectra for the PRBS modulated optical signal at 10 Gb/s. Comparison between the measurement obtained in the pure optical domain by using the high resolution LISA method (red curve) with that one obtained in the electrical domain by using a conventional electrical spectrum analyzer (grey curve).

Fig. 6.
Fig. 6.

Zoom of Fig. 5. The grey curve is represented in the secondary Y-axis for its better comparison.

Fig. 7.
Fig. 7.

Comparison between the measured fiber electrostriction curve (blue), the corresponding 10 MHz averaged electrostriction effect (grey) and the RF spectra measured by using the high resolution LISA method (red).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = 2 π n 2 θ Ω L eff λ 0 A eff I ( t ) = m θ Ω I ( t )
n 2 eff θ Ω = [ ( 2 b ( θ ) n 2 k + n 2 e ( Ω ) ) ]
E ´ ( t ) = exp [ j ω 0 t ] [ 1 + jm I ( t ) ]
I ´ ( ω ) = δ ( ω ω 0 ) + m 2 S ( ω ω 0 )

Metrics