Abstract

Optical bistability phenomenon in a single fiber ring laser employing erbium-doped fiber (EDF) as gain medium is observed in our experiment. In the EDF amplifiers, the photons of pump light cannot completely transfer into that of signal light because of various attenuation factors. This part of loss (useless pump loss) and active spontaneous emission (ASE) can both lower the small-signal gain of the EDF, and can eventually result in the bistability phenomenon. The range of this bistability has a complicated relationship with the length of the EDF, the erbium-ion doping concentration, the cavity loss and the useless loss coefficient of the pump light.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Mao and J. Lit, "Optical bistability in an L-band dual wavelength erbium-doped fiber laser with overlapping cavities," IEEE Photon. Technol. Lett. 14, 1252-1254 (2002).
    [CrossRef]
  2. C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
    [CrossRef]
  3. Y. Mitnick, M. Horowitz, and B. Fischer, "Bistability in cavities with erbium-doped fiber amplifier due to bidirectional pump-beam interference," J. Opt. Soc. Am. B 14, 2079-2082 (1997).
    [CrossRef]
  4. W. J. Lai and P. Shum, "Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser," Opt. Express 12, 5640-5645 (2004).
    [CrossRef] [PubMed]
  5. J. M. Oh and D. Lee, "Strong Optical Bistability in a Simple L-Band Tunable Erbium-Doped Fiber Ring Laser," IEEE J. Quantum Electron. 40, 374-377 (2004).
    [CrossRef]
  6. K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
    [CrossRef]
  7. C. Giles and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
    [CrossRef]
  8. E. l. Desurvire and J. Simpson, "Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers," J. Lightwave Technol. 7, 835-845 (1989).
    [CrossRef]
  9. Th. Pfeiffer and H. Bülow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
    [CrossRef]

2004

J. M. Oh and D. Lee, "Strong Optical Bistability in a Simple L-Band Tunable Erbium-Doped Fiber Ring Laser," IEEE J. Quantum Electron. 40, 374-377 (2004).
[CrossRef]

W. J. Lai and P. Shum, "Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser," Opt. Express 12, 5640-5645 (2004).
[CrossRef] [PubMed]

2002

Q. H. Mao and J. Lit, "Optical bistability in an L-band dual wavelength erbium-doped fiber laser with overlapping cavities," IEEE Photon. Technol. Lett. 14, 1252-1254 (2002).
[CrossRef]

1997

1992

Th. Pfeiffer and H. Bülow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
[CrossRef]

1991

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

C. Giles and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

1989

E. l. Desurvire and J. Simpson, "Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers," J. Lightwave Technol. 7, 835-845 (1989).
[CrossRef]

1987

C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
[CrossRef]

Aida, K.

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

Bülow, H.

Th. Pfeiffer and H. Bülow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
[CrossRef]

Desurvire, E.

C. Giles and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

Fujita, T.

C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
[CrossRef]

Giles, C.

C. Giles and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

Lai, W. J.

Lit, J.

Q. H. Mao and J. Lit, "Optical bistability in an L-band dual wavelength erbium-doped fiber laser with overlapping cavities," IEEE Photon. Technol. Lett. 14, 1252-1254 (2002).
[CrossRef]

Mao, Q. H.

Q. H. Mao and J. Lit, "Optical bistability in an L-band dual wavelength erbium-doped fiber laser with overlapping cavities," IEEE Photon. Technol. Lett. 14, 1252-1254 (2002).
[CrossRef]

Nakagawa, K.

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

Nishi, S.

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

Pfeiffer, Th.

Th. Pfeiffer and H. Bülow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
[CrossRef]

Schremer, A.

C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
[CrossRef]

Shum, P.

Tang, C. L.

C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
[CrossRef]

Yoneda, E.

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

Appl. Phys. Lett.

C. L. Tang, A. Schremer, and T. Fujita, "Bistability in two-mode semiconductor lasers via gain saturation," Appl. Phys. Lett. 51, 1392-1394 (1987).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Oh and D. Lee, "Strong Optical Bistability in a Simple L-Band Tunable Erbium-Doped Fiber Ring Laser," IEEE J. Quantum Electron. 40, 374-377 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

Th. Pfeiffer and H. Bülow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
[CrossRef]

Q. H. Mao and J. Lit, "Optical bistability in an L-band dual wavelength erbium-doped fiber laser with overlapping cavities," IEEE Photon. Technol. Lett. 14, 1252-1254 (2002).
[CrossRef]

J. Lightwave Technol.

K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, "Trunk and Distribution Network Application of Erbium-Doped Fiber Amplifier," J. Lightwave Technol. 9, 198-208 (1991).
[CrossRef]

C. Giles and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

E. l. Desurvire and J. Simpson, "Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers," J. Lightwave Technol. 7, 835-845 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the single fiber ring laser; (b) Optical bistability observed in the proposed scheme.

Fig. 2.
Fig. 2.

(a) Experimental schematic for the gain character curve of the EDF; (b) Experimental gain characteristic curve under pump of 74.2mW and 55.8mW.

Fig. 3.
Fig. 3.

(a) The EDF is 36m long, and with no useless pump loss or ASE; (b) The EDF is 36m long, αp =0.21, αs =0.28 , αcp =0.12 and the cavity loss is 5dB.

Fig. 4.
Fig. 4.

(a) The EDF is 36m long, α =0.21, αs =0.28 , αcp =0.15 , and the cavity loss is 5dB; (b) The EDF is 45m long, αp =0.21, αs =0.28, αcp =0.12, and the cavity loss is 5dB;

Fig. 5.
Fig. 5.

(a) The EDF is 36m long, αp =0.42, αs =0.56, αcp =0.12, and the cavity loss is 5dB; (b) The EDF is 36m long, αp =0.21, αs=0.28, αcp =0.12, and the cavity loss is 10dB.

Fig. 6.
Fig. 6.

(a) The EDF is 36m long, αp =0.21, αs =0.28, and αcp =0.12; (b) The EDF is 36m long, αp =0.42, αs =0.56, and αcp=0.12.

Tables (1)

Tables Icon

Table 1. Typical Fiber Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R energy = R photon λ pump λ signal = 0.63 R photon
d N 2 z t dt = Γ p σ p P p o a p h ν p N 1 Γ s σ s a s h v s ( P s o + P a +o + P a −o ) ( N 2 N 1 ) N 2 T 1
N 2 = ( P p + P s + P a + + P a ) N t 1 + 2 ( P s + P a + + P a ) + P p
d P p dz = α p P s + P a + + P a + 1 1 + 2 ( P s + P a + + P a ) + P p P p α cp P p
d P s dz = α s P p 1 1 + 2 ( P s + P a + + P a ) + P p P s
d P a + dz = α s P p 1 1+2 ( P s + P a + + P a ) + P p P a + + k α s P p + P s + P a + + P a 1+2 ( P s + P a + + P a ) + P p
d P a dz = α s P p 1 1+2 ( P s + P a + + P a ) + P p P a k α s P p + P s + P a + + P a 1 + 2 ( P s + P a + + P a ) + P p

Metrics