Abstract

We firstly report on the fabrication of Cu2+ -doped germano-silicate glass fiber for nonlinear optical devices application by using modified chemical vapor deposition and solution doping processes. Broadband absorption near 700nm due to the 3d-shell electron transitions of Cu2+ ions from the ground state to the excited states was observed. The resonant nonlinearity of the Cu2+-doped fiber was estimated to be 5.5×10-17m2/W by measuring the phase shift of the fringes obtained from the long-period fiber grating pair upon pumping with a laser diode at 980nm and non-resonant nonlinearities were also measured to be 4.114×10-21m2/W by the continuous wave self-phase modulation method.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Byron, "Kerr modulation of signal at 1.3 and 1.5μm in polarization-maintaining fiber pumped at 1.08μm," Electron. Lett. 23, 1324-1326 (1987).
    [CrossRef]
  2. H. G. Park, C. C. Pohalski, and B. Y. Kim, "Optical Kerr switching using elliptical core two-mode fiber," Opt. Lett. 13, 776-778 (1988).
    [CrossRef] [PubMed]
  3. G. P. Agrawal, "Appendix B: Nonlinear Refractive Index," in Nonlinear Fiber Optics, P. L. Kelley, ed., (Academic Press, San Diego, 3rd, 2001).
  4. P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11. 3658-3573 (2003).
    [CrossRef]
  5. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
  6. K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
    [CrossRef]
  7. H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
    [CrossRef] [PubMed]
  8. P. L. Chu, "Nonlinear effects in rare-earth-doped fibers and waveguides," in Proceedings of Lasers and Electro-Optics Society Annual Meeting (LEOS’97 10th Annual Meeting, Academic, San Francisco, CA Technical meeting, 1997), pp. 371-372.
  9. R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
    [CrossRef]
  10. J. W. Arkwright, P. Elango, and G. R. Atkins, "Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber," J. Lightwave Technol. 16, 798-806 (1998).
    [CrossRef]
  11. H. Nakanishi, in Extended Abstract of Industrial Science and Technology Frontier Program, the Sixth Symposium on Nonlinear Photonic Materials (Japan Chemical Innovation Institute, Tokyo, 1999), paper 1 (in Japanese).
  12. Y. H. Kim, B. H. Lee, U. -C. Paek, and W. -T. Han, "Resonant optical nonlinearity measurement of Yb3+/Al3+ co-doped optical fibers by use of a long-period fiber grating pair," Opt. Lett. 27, 580-582 (2002).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, "Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55μm," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  14. K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
    [CrossRef]
  15. S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).
  16. P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
    [CrossRef]
  17. J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
    [CrossRef]
  18. D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
    [CrossRef]
  19. X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
    [CrossRef]

2004

2003

2002

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

Y. H. Kim, B. H. Lee, U. -C. Paek, and W. -T. Han, "Resonant optical nonlinearity measurement of Yb3+/Al3+ co-doped optical fibers by use of a long-period fiber grating pair," Opt. Lett. 27, 580-582 (2002).
[CrossRef]

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

2001

K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
[CrossRef]

1999

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

1998

1997

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

1996

S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, "Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55μm," Opt. Lett. 21, 1966-1968 (1996).
[CrossRef] [PubMed]

1992

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

1991

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

1988

1987

K. C. Byron, "Kerr modulation of signal at 1.3 and 1.5μm in polarization-maintaining fiber pumped at 1.08μm," Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

Arkwright, J. W.

Asimakis, S.

Atkins, G. R.

Betts, R. A.

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

Boskovic, A.

Byron, K. C.

K. C. Byron, "Kerr modulation of signal at 1.3 and 1.5μm in polarization-maintaining fiber pumped at 1.08μm," Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

Chernikov, S. V.

Chu, P. L.

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

Ebendorff-Heidepriem, H.

Ebendorff-Herdepriem, H.

Elango, P.

Espinoza-Beltrán, F. J.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Farrington, H. C.

S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).

Finazzi, V.

Frampton, K.

Friberg, S. E.

S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).

García-Rodríguez, F. J.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

González-Hernández, J.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Gruner-Nielsen, L.

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Han, W. -T.

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Jones, S. M.

S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Kikuchi, K.

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

Kim, B. Y.

Kim, Y. H.

Koizumi, F.

Lee, B. H.

Levring, O. A.

Li, Q.

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Meng, Z.

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Ming, N.

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Monro, T. M.

Moore, R. C.

Nakajima, K.

K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
[CrossRef]

Ohashi, M.

K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
[CrossRef]

Omae, T.

K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
[CrossRef]

Paek, U. -C.

Park, H. G.

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Pérez-Robles, J. F.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Petropoulos, P.

Petrpopoulos, P.

Pohalski, C. C.

Richardson, D. J.

Sheik-Bache, M.

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Sugimoto, N.

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

Taylor, J. R.

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Tjugiato, T.

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Van Stryland, E. W.

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Vorobiev, Y. V.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Xue, Y. L.

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

Yáñez-Limón, J. M.

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Zhu, X.

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Appl. Phys. Lett.

X. Zhu, Q. Li, N. Ming, and Z. Meng, "Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses," Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Bull. Mater. Sci.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Electron. Lett.

K. C. Byron, "Kerr modulation of signal at 1.3 and 1.5μm in polarization-maintaining fiber pumped at 1.08μm," Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

IEEE J. Quantum. Elect.

R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, "Nonlinear refractive index in Erbium doped optical fiber: theory and experiment," IEEE J. Quantum. Elect. 27, 908-913 (1991).
[CrossRef]

J. Lightwave Technol.

J. Phys. Chem. Solids

J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev and J. González-Hernández, "Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions," J. Phys. Chem. Solids 60, 1729-1736 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, "Kramers-Krönig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Optoelectron.

K. Nakajima, T. Omae, and M. Ohashi, "Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method," IEEE Proc.-Optoelectron. 148, 209-214 (2001).
[CrossRef]

Phys. Chem. Glasses

S. M. Jones, S. E. Friberg, and H. C. Farrington, "Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels," Phys. Chem. Glasses 37, 111-115 (1996).

Other

G. P. Agrawal, "Appendix B: Nonlinear Refractive Index," in Nonlinear Fiber Optics, P. L. Kelley, ed., (Academic Press, San Diego, 3rd, 2001).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.

P. L. Chu, "Nonlinear effects in rare-earth-doped fibers and waveguides," in Proceedings of Lasers and Electro-Optics Society Annual Meeting (LEOS’97 10th Annual Meeting, Academic, San Francisco, CA Technical meeting, 1997), pp. 371-372.

H. Nakanishi, in Extended Abstract of Industrial Science and Technology Frontier Program, the Sixth Symposium on Nonlinear Photonic Materials (Japan Chemical Innovation Institute, Tokyo, 1999), paper 1 (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the resonant nonlinearity measurement setup by using a LPG pair and two WDM couplers (980/1550nm)

Fig. 2.
Fig. 2.

Block diagram of n2,NR measurement setup using cw-SPM method PC = polarization controller BPF = band pass filter ATT = optical attenuator OSA = optical spectrum analyzer FUT = fiber under test

Fig. 3.
Fig. 3.

Comparison of the absorption spectra of the Cu2+-doped germano-silicate glass fiber and the reference germano-silicate glass fiber without Cu2+-incorporation.

Fig. 4.
Fig. 4.

Energy level diagram for d9 Cu2+ as a free ion in octahedral, tetragonal, and square planar coordination

Fig. 5.
Fig. 5.

Transmission spectrum of the Cu2+-doped fiber LPG pairs and the fringe phase shifts upon pumping with 980nm LD at 0 ∼ 100mW: (a) LPG fringes near 1550nm; (b) the enlarged fringe centered at 1539.9 nm

Fig. 6.
Fig. 6.

(a). cw-SPM spectrum of 151.6m Cu2+-fiber and (b) slopes of the phase shifts over different input power from EDFA.

Tables (1)

Tables Icon

Table 1. Non-resonant nonlinear optical parameters of the Cu2+-doped fiber

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 , R = A eff λ p L eff 2 b∙S Δ λ P pump
L eff = 1 e α∙L α
A eff = [ E ( x , y ) 2 dxdy ] 2 E ( x , y ) 4 dxdy
I 0 I 1 = J 0 2 ( φ SPM ) + J 1 2 ( φ SPM ) J 1 2 ( φ SPM ) + J 2 2 ( φ SPM )
n 2 , NR = λ A eff 4 π L eff [ φ SPM P AVG ] = λ A eff 4 π L eff κ ac
γ = 2 π λ n 2 , NR A eff = φ SPM P AVG 1 2 L eff = κ ac 2 L eff

Metrics