Abstract

We report on a miniature spectrometer with a volume of 0.135 cm3 and dimensions of 3×3×11 mm, mounted directly on the surface of a CCD sensor. The spectrometer is formed by two flat diffraction gratings that are designed to perform both the dispersion and imaging functions, eliminating the need for any spherical optics. Two separate parts of the device were fabricated with the single-mask 1 μm lithography on a single glass wafer. The wafer was diced and the device was assembled and directly mounted onto a CCD sensor. The resolution of 3 nm, spectral range of 450 to 750 nm and the optical throughput of ∼9% were measured to be in a complete agreement with the model used for the development of the device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel,"MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range, " J. Micromech. Microeng. 15,S145-S152 (2005)
    [CrossRef]
  2. H. W. Yen, H. R. Friedrich, R. J. Morrison, and G. L. Tangonan, "Planar Rowland spectrometer for fiber-optic wavelength demultiplexing," Opt. Lett. 6,639-641 (1981).
    [CrossRef] [PubMed]
  3. Don.S.Goldman, P.L.White, and N.C. Anheier, "Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis," Appl. Opt. 29,4583-4589 (1990).
    [CrossRef] [PubMed]
  4. Dietmar Sander and Jorg Muller, "Selffocusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators A. 88,1-9 (2001).
    [CrossRef]
  5. O. Manzardo, R. Michaely, F. Schdelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, "Miniature lamellar grating interferometer based on silicon technology," Opt. Lett. 29,1437-1439 (2004)
    [CrossRef] [PubMed]
  6. G. Boer, P. Ruffieux, T. Scharf, P. Seitz, and R. Dndliker, "Compact Liquid-Crystal-Polymer Fourier-Transform Spectrometer," Appl. Opt. 43,2201-2208 (2004)
    [CrossRef] [PubMed]
  7. S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar Reflection Grating Lens for Compact Spectroscopic Imaging System, " Appl. Opt. 42,175-180 (2003).
    [CrossRef] [PubMed]
  8. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, "A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens," Opt. Express 14,4064-4072 (2006).
    [CrossRef] [PubMed]
  9. S. Ura, T. Sasaki and H. Nishihara, "Combination of Grating Lenses for Color Splitting and Imaging, " Appl. Opt. 40,5819-5824 (2001).
    [CrossRef]
  10. J. F. James and R. S. Sternberg "The Design Of Optical Spectrometers", Chapman and Hall, London 1969
  11. H. Noda, T. Namioka, and M. Seya, "Geometric theory of the grating," J. Opt. Soc. Am. 64,1031-1036 (1974).
    [CrossRef]
  12. C. Palmer, W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating systems," Opt. Eng.,  33,820-829 (1994).
    [CrossRef]
  13. ZEMAX Optical Design Program, User’s Guide, Version 9.0 (Focus Software, Inc., Tucson, Ariz., 2000).
  14. http://www.videologyinc.com

2006 (1)

2005 (1)

R. F. Wolffenbuttel,"MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range, " J. Micromech. Microeng. 15,S145-S152 (2005)
[CrossRef]

2004 (2)

2003 (1)

2001 (2)

S. Ura, T. Sasaki and H. Nishihara, "Combination of Grating Lenses for Color Splitting and Imaging, " Appl. Opt. 40,5819-5824 (2001).
[CrossRef]

Dietmar Sander and Jorg Muller, "Selffocusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators A. 88,1-9 (2001).
[CrossRef]

1994 (1)

C. Palmer, W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating systems," Opt. Eng.,  33,820-829 (1994).
[CrossRef]

1990 (1)

1981 (1)

1974 (1)

Auner, G. W.

Avrutsky, I.

Boer, G.

Chaganti, K.

De Rooij, N.

Dndliker, R.

Friedrich, H. R.

Herzig, H. P.

Manzardo, O.

McKinney, W. R.

C. Palmer, W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating systems," Opt. Eng.,  33,820-829 (1994).
[CrossRef]

Michaely, R.

Morrison, R. J.

Muller, Jorg

Dietmar Sander and Jorg Muller, "Selffocusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators A. 88,1-9 (2001).
[CrossRef]

Namioka, T.

Nishihara, H.

Nishio, K.

Noda, H.

Noell, W.

Okano, M.

Okayama, F.

Overstolz, T.

Palmer, C.

C. Palmer, W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating systems," Opt. Eng.,  33,820-829 (1994).
[CrossRef]

Ruffieux, P.

Salakhutdinov, I.

Sander, Dietmar

Dietmar Sander and Jorg Muller, "Selffocusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators A. 88,1-9 (2001).
[CrossRef]

Sasaki, T.

Satoh, K.

Scharf, T.

Schdelin, F.

Seitz, P.

Seya, M.

Shiroshita, K.

Tangonan, G. L.

Ura, S.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel,"MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range, " J. Micromech. Microeng. 15,S145-S152 (2005)
[CrossRef]

Yen, H. W.

Yotsuya, T.

Appl. Opt. (4)

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel,"MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range, " J. Micromech. Microeng. 15,S145-S152 (2005)
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

C. Palmer, W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating systems," Opt. Eng.,  33,820-829 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Sens. Actuators A. (1)

Dietmar Sander and Jorg Muller, "Selffocusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators A. 88,1-9 (2001).
[CrossRef]

Other (3)

J. F. James and R. S. Sternberg "The Design Of Optical Spectrometers", Chapman and Hall, London 1969

ZEMAX Optical Design Program, User’s Guide, Version 9.0 (Focus Software, Inc., Tucson, Ariz., 2000).

http://www.videologyinc.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

General spectroscopic device

Fig. 2.
Fig. 2.

The grating imaging geometry. Point source A is imaged to an image point B. Single-grating (a) and double-grating (b) systems.

Fig.3.
Fig.3.

The design of a compact planar spectrometer.

Fig. 4.
Fig. 4.

The experimental setup. The spectrometer is visible as two transparent rectangles mounted over the image sensor. The light is fed to the spectrograph from the fiber tip visible in the left top corner.

Fig. 5.
Fig. 5.

The spectrum of a Neon lamp produced with the planar spectrograph and registered with a CCD chip.

Fig. 6.
Fig. 6.

Graphic representation of the registered spectrum of a Neon lamp.

Fig. 7.
Fig. 7.

Spectra of different pixel groups of a color LCD screen.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ ( λ , y , z ) = APB AOB + N ( y , z ) ,
ψ ( λ , y , z ) = Σ i = 0 Σ j = 0 F ij y i z j = Σ i = 0 Σ j = 0 ( M ij + N ij ) y i z j
ψ ( λ , y , z ) = Σ n = 0 1 n ! [ y ( y ) 0,0 + z ( z ) 0,0 ] n ψ ( λ , y , z )
N ij = M ij = 1 i ! j ! [ i + j ( APB AOB ) y i z j ] ( 0,0 )
ψ ( λ , y , z ) = Σ i = 0 Σ j = 0 ( M ij + mλN ij + m ˜ λ N ˜ ij ) y i z j
N ( y , z ) = Σ n = 0 c ij y i z j
L = S NA P

Metrics