Abstract

Calculations, based on modal analysis of scattering and absorption by compound spheres indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors for optical processes associated with the nanoparticles of 103 – 104 are predicted for realistic experimental conditions using homogenous microspheres. This mechanism for cascaded photoenhancement thus has the potential of dramatically increasing the sensitivities of vibrational and photoluminescent spectroscopies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
    [CrossRef]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
    [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
    [CrossRef]
  4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
    [CrossRef]
  5. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21,453–455 (1996).
    [CrossRef] [PubMed]
  6. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the infrared,” Opt. Lett. 23,247–249 (1998).
    [CrossRef]
  7. S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
    [CrossRef]
  8. R. K. Chang and A. J. CampilloOptical Processes in Microcavities (World Scientific, Singapore, (1996).
    [CrossRef]
  9. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
    [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
    [CrossRef] [PubMed]
  11. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
    [CrossRef] [PubMed]
  12. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40,570–582(2001).
    [CrossRef]
  13. W. R. Boyd and J. E. Heebner , “Sensitive disk resonantor photonic biosensor,” Appl. Opt. 40,5742–5747 (2001).
    [CrossRef]
  14. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27,512–514 (2002).
    [CrossRef]
  15. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Integrated optical microcavities for enhanced evanescent-wave spectroscopy,” Opt. Lett. 27,1504”1506 (2002).
    [CrossRef]
  16. C. F. Bohren and D. R. HuffmanAbsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. D. D. Smith and K. A. Fuller, “Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres,” J. Opt. Soc. Am. B 19,2449–2455 (2002).
    [CrossRef]
  18. K. A. Fuller and D. W. Mackowski, “ Light Scattering by Compounded Spherical Particles, ” in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000).
  19. K. A. Fuller and D. D. Smith, “Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors, ” in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).
  20. E. M. Purcell , “]Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,681 (1946).
  21. K. H. DrexhageProgress in Optics,vol. 12 (E. WolfEd., North-Holland, Amsterdam, 1974).
  22. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
    [CrossRef]
  23. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” App. Phys. Lett. 69,2327 (1996).
    [CrossRef]
  24. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
    [CrossRef]
  25. L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
    [CrossRef]
  26. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
    [CrossRef]

2005 (2)

K. A. Fuller and D. D. Smith, “Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors, ” in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

2003 (3)

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
[CrossRef] [PubMed]

2002 (7)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27,512–514 (2002).
[CrossRef]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Integrated optical microcavities for enhanced evanescent-wave spectroscopy,” Opt. Lett. 27,1504”1506 (2002).
[CrossRef]

D. D. Smith and K. A. Fuller, “Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres,” J. Opt. Soc. Am. B 19,2449–2455 (2002).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

2001 (2)

1998 (1)

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

1996 (2)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21,453–455 (1996).
[CrossRef] [PubMed]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” App. Phys. Lett. 69,2327 (1996).
[CrossRef]

1992 (1)

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

1985 (1)

L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
[CrossRef]

1946 (1)

E. M. Purcell , “]Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,681 (1946).

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
[CrossRef]

Aubard, J.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Blair, S.

Bohren, C. F.

C. F. Bohren and D. R. HuffmanAbsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boyd, W. R.

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Campillo, A. J.

R. K. Chang and A. J. CampilloOptical Processes in Microcavities (World Scientific, Singapore, (1996).
[CrossRef]

Chang, R. K.

R. K. Chang and A. J. CampilloOptical Processes in Microcavities (World Scientific, Singapore, (1996).
[CrossRef]

Chen, Y.

Communale, J.

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

D’Auria, S.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Drexhage, K. H.

K. H. DrexhageProgress in Optics,vol. 12 (E. WolfEd., North-Holland, Amsterdam, 1974).

Driessen, A.

Druger, S. D.

L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Fang, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Folan, L. M.

L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
[CrossRef]

Fuller, K. A.

K. A. Fuller and D. D. Smith, “Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors, ” in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).

D. D. Smith and K. A. Fuller, “Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres,” J. Opt. Soc. Am. B 19,2449–2455 (2002).
[CrossRef]

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

K. A. Fuller and D. W. Mackowski, “ Light Scattering by Compounded Spherical Particles, ” in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000).

Gorodetsky, M. L.

Greve, J.

Gryczynski, I.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” App. Phys. Lett. 69,2327 (1996).
[CrossRef]

Heebner, J. E.

Hohenau, A.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Holler, S.

Huffman, D. R.

C. F. Bohren and D. R. HuffmanAbsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Ilchenko, V. S.

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Kimble, H. J.

Klunder, D. J. W.

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Krenn, J. R.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Krioukov, E.

Krishna, S.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Leévi, G.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Leitner, A.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Mabuchi, H.

Mackowski, D. W.

K. A. Fuller and D. W. Mackowski, “ Light Scattering by Compounded Spherical Particles, ” in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000).

Malicka, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

Otto, C.

Painter, O.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Purcell, E. M.

E. M. Purcell , “]Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,681 (1946).

Ramsey, J. M.

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

Savchenkov, A. A.

Schider, G.

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

Smith, D. D.

K. A. Fuller and D. D. Smith, “Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors, ” in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).

D. D. Smith and K. A. Fuller, “Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres,” J. Opt. Soc. Am. B 19,2449–2455 (2002).
[CrossRef]

Srinivasan, K.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

Stintz, A.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

Streed, E. W.

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” App. Phys. Lett. 69,2327 (1996).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Vernooy, D. W.

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28,272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Whitten, W. B.

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

Analytical Biochem. (1)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering,” Analytical Biochem. 301,261 (2002).
[CrossRef]

App. Phys. Lett. (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” App. Phys. Lett. 69,2327 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

N. Félidj, J. Aubard, G. Leévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman on gold nanoparticle arrays,” Appl. Phys. Lett. 82,3095–3097 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, ‘Protein detection by optical shift of a resonant cavity, ’ Appl. Phys. Lett. 80,4057–4059 (2002).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectro-scopic Shift of Two Microsphere Cavities,” Biophys. J. 85,1974–1979 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

L. M. Folan, S. Arnold, and S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118,322–327 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning memory spectroscopy,” J. Opt. Soc. Am. B 9,4081–4093 (1992).
[CrossRef]

D. D. Smith and K. A. Fuller, “Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres,” J. Opt. Soc. Am. B 19,2449–2455 (2002).
[CrossRef]

J. Phys.: Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14,R597–R624 (2002).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

E. M. Purcell , “]Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69,681 (1946).

Phys. Rev. B (2)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66,153,305 (2002).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72,205,318 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78,1667–1670(1997).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

Other (5)

R. K. Chang and A. J. CampilloOptical Processes in Microcavities (World Scientific, Singapore, (1996).
[CrossRef]

K. H. DrexhageProgress in Optics,vol. 12 (E. WolfEd., North-Holland, Amsterdam, 1974).

K. A. Fuller and D. W. Mackowski, “ Light Scattering by Compounded Spherical Particles, ” in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000).

K. A. Fuller and D. D. Smith, “Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors, ” in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).

C. F. Bohren and D. R. HuffmanAbsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Characteristic |E|2 in the equatorial plain of a microsphere tuned to a 2nd-order resonance. In the figure on the right, the internal fields have been removed in order to better profile the |E|2 of the evanescent field near the surface of the resonator.

Fig. 2.
Fig. 2.

Absorption efficiency spectrum of a 20 nm diameter Au sphere on a 5 μm diameter latex microbead. The position of the nanoparticle (not drawn to scale) relative to the incident beam is shown in the inset. The absorption efficiency of the nanoparticle in the absence of the sphere is given by the black curve.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E inc = Σ m = ± 1 , np q mnp Rg N mnp ,
q mnp = N mnp * | E inc .
E sca = Σ m = ± 1 , np q mnp a np N mnp ,
E tra = Σ m = ± 1 , np q mnp c np Rg N mnp ,
E sca = Σ = 1 N S Σ mnp q mnp a mnp N mnp ( k r ) ,
a mnp = a np ( q mnp + Σ ´ = 1 N s Σ jkl A mnpjkl ´ a jkl ´ ) , ´ .
A mnpjkl ´ = N mnp * ( k r ) N jkl ( k r ´ )
C abs = 1 2 F 0 Re E tot × ( H tot ) * ê r dA ,
I SERS E loc ( ω exc ) 2 E 0 ( ω exc ) 2 E loc ( ω RS ) 2 E 0 ( ω RS ) 2 ,
E loc ( ω exc ) 2 / E 0 ( ω exc ) 2 10 2 10 4 .

Metrics