Abstract

Experiments were carried out to study the focusing properties of radially polarized light. By direct recording of the focal pattern in photoresist, the intensity distribution in the vicinity of the beam focus was measured, and the non-propagating longitudinal component (z-component) was clearly demonstrated. Comparison with corresponding theory shows good agreement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
    [CrossRef]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
    [CrossRef]
  3. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  4. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
    [PubMed]
  5. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
    [CrossRef] [PubMed]
  6. .B. Jia, X. Gan, and M. Gu, "Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD," Opt. Express 13, 6821-6827 (2005).
    [CrossRef] [PubMed]
  7. D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001),
    [CrossRef] [PubMed]
  8. T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
    [CrossRef]
  9. G. Kihara Rurimo et al., "Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam," J. Appl. Phys. 100, 023112 (2006)
    [CrossRef]
  10. For example, Newport Oriel Instruments, part no. 25328
  11. V.G. Niziev and A.V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
    [CrossRef]
  12. Q. Zhan and J.R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations", Opt. Commun. 213, 241-245 (2002).
    [CrossRef]
  13. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  14. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens system," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  15. P. Török, P. Varga, Z. Laczik and G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995)
    [CrossRef]

2006

G. Kihara Rurimo et al., "Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam," J. Appl. Phys. 100, 023112 (2006)
[CrossRef]

2005

2003

T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
[CrossRef]

2002

Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
[PubMed]

Q. Zhan and J.R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations", Opt. Commun. 213, 241-245 (2002).
[CrossRef]

2001

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens system," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001),
[CrossRef] [PubMed]

2000

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

1999

V.G. Niziev and A.V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

1995

1959

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
[CrossRef] [PubMed]

Biss, D. P.

Booker, G.R.

Brown, T. G.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Gan, X.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Gu, M.

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens system," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Jia, B.

Juškaitis, R.

T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
[CrossRef]

Kihara Rurimo, G.

G. Kihara Rurimo et al., "Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam," J. Appl. Phys. 100, 023112 (2006)
[CrossRef]

Laczik, Z.

Leger, J. R.

Leger, J.R.

Q. Zhan and J.R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations", Opt. Commun. 213, 241-245 (2002).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Massoumian, F.

T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
[CrossRef]

Nesterov, A.V.

V.G. Niziev and A.V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Niziev, V.G.

V.G. Niziev and A.V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
[CrossRef] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Török, P.

Varga, P.

Wilson, T.

T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

Zhan, Q.

Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
[PubMed]

Q. Zhan and J.R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations", Opt. Commun. 213, 241-245 (2002).
[CrossRef]

Appl. Phys. B

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "The focus of light- theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
[CrossRef]

J. Appl. Phys.

G. Kihara Rurimo et al., "Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam," J. Appl. Phys. 100, 023112 (2006)
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D.

V.G. Niziev and A.V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Opt. Commun.

Q. Zhan and J.R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations", Opt. Commun. 213, 241-245 (2002).
[CrossRef]

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens system," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light into a tighter spot," Opt. Commun. 179, 1-7 (2000)
[CrossRef]

Opt. Eng.

T. Wilson, F. Massoumian, and R. Juškaitis, "Generation of focusing of radially polarized electric fields," Opt. Eng. 42, 3088-3089 (2003)
[CrossRef]

Opt. Express

Phys. Rev. Lett.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5253, (2001).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Other

For example, Newport Oriel Instruments, part no. 25328

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup: generation of radial and azimuthal polarization

Fig. 2.
Fig. 2.

Focal position control by knife-edge technique. The mask plate contains a knife-edge pattern. Photoresist is spun on top of the mask plate. The position is accurately controlled by the micro actuator.

Fig. 3.
Fig. 3.

Calibration curve of the photoresist

Fig. 4.
Fig. 4.

Geometry of focusing in photoresist. The Gaussian focal point is at z=0 and the thickness of the photoresist is d. The air-photoresist interface lies in z= -d/2

Fig. 5.
Fig. 5.

Intensity distribution recorded by the photoresist placed in the focal plane of radially polarized light, NA=0.8 (a) no topological charge, (b) topological charge 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E r = iA 0 θ max cos θ 1 t p sin θ 1 cos θ 2 J 1 ( k 1 r sin θ 1 ) exp ( i k 0 Ψ ) e ik 2 z cos θ 2 d θ 1 .
E z = A 0 θ max cos θ 1 t p sin θ 1 sin θ 2 J 0 ( k 1 r sin θ 1 ) exp ( i k 0 Ψ ) e ik 2 z cos θ 2 d θ 1 .
t p = 2 sin θ 2 cos θ 1 sin ( θ 1 + θ 2 ) cos ( θ 1 θ 2 )
Ψ = d ( n 2 cos θ 2 n 1 cos θ 1 )
E r = iA 0 θ max cos θ 1 t p sin θ 1 cos θ 2 [ J 3 ( k 1 r sin θ 1 ) J 1 ( k 1 r sin θ 1 ] exp ( i k 0 Ψ ) e ik 2 z cos θ 2 d θ 1 .
E ϕ = A 0 θ max cos θ 1 t p sin θ 1 cos θ 2 [ J 3 ( k 1 r sin θ 1 ) + J 1 ( k 1 r sin θ 1 ) ] exp ( i k 0 Ψ ) e ik 2 z cos θ 2 d θ 1 .
E z = 2 A 0 θ max cos θ 1 t p sin θ 1 sin θ 2 J 2 ( k 1 r sin θ 1 ) exp ( i k 0 Ψ ) e ik 2 z cos θ 2 d θ 1 .

Metrics