Abstract

We report on spectral-domain and time-domain measurements and numerical calculations of group velocities in a photonic crystal coupled waveguide, where the unique guided mode band structure has a flat band region within the photonic band gap allowing for slow light observation. The spectral dependence of group velocity, which is measured by interference method, indicates the existence of slow light modes around the inflection point of the unique flat band, rather than at the band edge. Time-domain observation of optical pulses propagating along two-dimension slab photonic crystal coupled waveguides is also demonstrated by using a high speed oscilloscope. By adjusting the wavelength of the input pulses toward the flat band of the coupled defect modes, an increasing duration time between reference and output pulses are clearly observed. An extremely small group velocity of 0.017c is thus obtained. Calculated group velocities show good agreement with our measured results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101 (2004).
    [CrossRef]
  2. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005),
    [CrossRef] [PubMed]
  3. A. Yariv, Y. Xu, R. K. Lee, and A. Sherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711 (1999).
    [CrossRef]
  4. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
    [CrossRef]
  5. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef]
  6. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  7. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866 (2004).
    [CrossRef]
  8. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  9. R. S. Jacoben, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. F. Pedersen, and P. I. Borel, "Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides," Opt. Express 13, 7861 (2005),
    [CrossRef]
  10. J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and Ali Adibi, "Observation of large parity change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques," Appl. Phys. Lett. 88, 071111 (2006).
    [CrossRef]
  11. T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
    [CrossRef]
  12. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  13. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005).
    [CrossRef] [PubMed]
  14. N. Yamamoto, T. Ogawa, and K. Komori, "Photonic crystal directional coupler switch with small switching length and wide band width," Opt. Express 14, 1223 (2006).
    [CrossRef] [PubMed]
  15. Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 (2006).
    [CrossRef] [PubMed]

2006

2005

2004

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101 (2004).
[CrossRef]

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866 (2004).
[CrossRef]

2002

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999

Asano, T.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

Baba, T.

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101 (2004).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Borel, P. I.

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Eich, M.

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866 (2004).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Frandsen, L. H.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Jacoben, R. S.

Joannopoulos, J. D.

Johnson, S. G.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Kiyota, K.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

Komori, K.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kumamoto, D.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

Lavrinenko, A. V.

Lee, R. K.

McNab, S. J.

Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Mori, D.

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101 (2004).
[CrossRef]

Moulin, G.

Noda, S.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Ogawa, T.

Pedersen, J. F.

Petrov, A. Y.

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866 (2004).
[CrossRef]

Peucheret, C.

Povinelli, M. L.

Sherer, A.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Song, B. S.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yamamoto, N.

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Yariv, A.

Ypkohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Zsigri, B.

Appl. Phys. Lett.

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866 (2004).
[CrossRef]

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, "Time-Domain measurement of pico-second light propagation in a two-dimensional photonic crystal slab waveguide," Appl. Phys. Lett. 84, 4690 (2004).
[CrossRef]

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909 (2002).
[CrossRef]

Nature

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys Rev. Lett.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Ypkohama, "Extremely large group-velocity-dispersion of line-defect waveguides in photonic crystal slabs," Phys Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Other

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and Ali Adibi, "Observation of large parity change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques," Appl. Phys. Lett. 88, 071111 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). SEM image of PhCCW with lattice constant a = 438 nm and hole diameter 2r0=250 nm. The radius of holes in the center row (rc) and those besides the waveguides (r1, r2) are designed as rc=0.44a, r1=0.23a, and r2=0.30a, respectively. The position of holes with radius r2 shifted toward the waveguides (s2) is 0.15a. The inset shows MMI devices with dimension 3.2 μm × 5.7 μm used in the experiments. (b) and (c) are the calculated band diagrams of PhCCWs with different structural parameters: (r0, rc, r1, r2, s2)= (0.30a, 0.44a, 0.30a, 0.33a, 0.00a) in (b) and (0.28a, 0.41a, 0.26a, 0.27a, 0.22a) in (c). The black line and S-shape-like of blue (or red) line represent the odd and even modes of coupled bands in PhCCW, respectively. The characters of A, M and N indicate the inflections points of bands. (d) the measured transmission spectrum of PhCCWs with length L=200 μm. In this case, the structural parameters are designed to be the same as that used in (c).

Fig. 2.
Fig. 2.

(a). Schematic of an integrated MZI structure. The gray bold line represents the stripe Si waveguides. (b) Measured transmission spectrum of a MZI sample. In this case, the length and the lattice constant of PhCCW are 200 μm and 438 nm, respectively. (c) Wavelength dependence of group indices (blue squares) deduced from (b) by using inference approach. The black dash line shows the theoretical group indices calculated from the inverse of slopes of the blue line (coupled band) in Fig. 1(c). blue line (coupled band) in Fig. 1(c).

Fig. 3.
Fig. 3.

Time-resolved measurements obtained by recording output pulses on the oscilloscope. The black, red, and blue lines represent samples with PhCCW length of L=100, 200, and 500 μm, respectively. The waveforms in the leftmost of plots, named reference signals (Ref.). Others correspond to output signals (Out.), which means pulses travel through PhCCW. Measurements at different central wavelengths of launched pulses λ =1541.02 nm, 1539.38 nm, and 1537.30 nm are shown in (a), (b), and (c), respectively. The magnified plot of the blue line in (c) is shown in (e). A weak output signal is clearly observed. (d) The measured duration time with different launched wavelengths as a function of PhCCW length.

Fig. 4.
Fig. 4.

(a). Measured group velocities (blue dot) in comparison with theoretical ones (black line), which are derived from the calculated band diagrams in Fig. 1(c). The character “A” indicates the calculated inflection point of the coupled band. The lowest group velocity in experiments is about 0.017c at ω=0.2849 (orλ =1537.30 nm). (b) Calculated GVD (black line) from Fig. 1(c) and experimental GVD (blue line) derived from measured Vg in Fig. 4(a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n g sig ( λ ) = λ min * λ max 2 L ( λ min λ max ) + n si ( λ )

Metrics