Abstract

We investigate acousto-optic long period grating resonances in a fluid-filled solid-core photonic bandgap fiber (PBGF). The acoustic grating design enables electrically tunable notches in each of the PBGF transmission bands, where both the center frequency and depth of the resonances can be varied. The measured intermodal beat length and resonance bandwidth are in good agreement with numerical simulations based on multipole method. We show that the highly dispersive nature of PBGF modes results in very narrow-band rejection for a given grating pitch.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
    [CrossRef]
  2. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  3. Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  4. P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
    [CrossRef]
  5. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  6. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890-3895 (2005).
    [CrossRef] [PubMed]
  7. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  8. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  9. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  10. P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
    [CrossRef] [PubMed]
  11. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Anti-resonant reflecting photonic crystal optical waveguides," Opt. Lett. 271592-1594 (2002).
    [CrossRef]
  12. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  13. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  14. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005).
    [CrossRef] [PubMed]
  15. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
    [CrossRef] [PubMed]
  16. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
    [CrossRef]
  17. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
    [CrossRef]
  18. H. S. Kim, S. H. Yun, I. K, Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
    [CrossRef]
  19. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-30 (2002).
    [CrossRef]
  20. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  21. G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
    [CrossRef] [PubMed]
  22. D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
    [CrossRef]
  23. M. W. Haakestad and H. E. Engan, "Acoustooptic properties of a weakly multimode solid core photonic crystal fiber," J. Lightwave Technol. 24, 838-845 (2006).
    [CrossRef]
  24. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
    [CrossRef]
  25. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
    [CrossRef]
  26. D. Östling and H. E. Engan, "Narrow-band acousto-optic tunable filtering in a two-mode fiber," Opt. Lett. 20, 1247-1249 (1995)
    [CrossRef] [PubMed]
  27. Q. Li, X. Liu, and H. P. Lee, "Demonstration of narrow-band acoustooptic tunable filters on dispersion-enhanced single-mode fibers," IEEE Photon. Technol. Lett. 14, 1551-1553 (2002).
    [CrossRef]
  28. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]

2006 (8)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

M. W. Haakestad and H. E. Engan, "Acoustooptic properties of a weakly multimode solid core photonic crystal fiber," J. Lightwave Technol. 24, 838-845 (2006).
[CrossRef]

A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (4)

2003 (1)

P. St. J. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef]

2002 (5)

2001 (1)

2000 (1)

1997 (1)

1995 (1)

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T.

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Anawati, D.

Argyros, A.

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Baldwin, K. W.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Biancalana, F.

Bigot, L.

Birks, T. A.

Bjarklev, A.

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

Bolger, J. A.

Botten, L. C.

Bouwmans, G.

Boyer, P.

Canning, J.

Cox, F. M.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

de Sterke, C.

de Sterke, C. M.

Diez, A.

Dolinski, M.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Douay, M.

Eggleton, B.

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
[CrossRef]

A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005).
[CrossRef] [PubMed]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Anti-resonant reflecting photonic crystal optical waveguides," Opt. Lett. 271592-1594 (2002).
[CrossRef]

Engan, H. E.

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Fuerbach, A.

George, A. K.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Groothoff, N.

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Haakestad, M. W.

Hale, A.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Headley, C.

Hermann, D.

Huang, Y. Y.

Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Joly, N.

Kang, M. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

Kerbage, C.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

Kim, B. Y.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

Kim, H. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

H. S. Kim, S. H. Yun, I. K, Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

Knight, J. C.

Kuhlmey, B.

Kuhlmey, B. T.

Large, M. C. J.

Lee, H. P.

Q. Li, X. Liu, and H. P. Lee, "Demonstration of narrow-band acoustooptic tunable filters on dispersion-enhanced single-mode fibers," IEEE Photon. Technol. Lett. 14, 1551-1553 (2002).
[CrossRef]

Li, Q.

Q. Li, X. Liu, and H. P. Lee, "Demonstration of narrow-band acoustooptic tunable filters on dispersion-enhanced single-mode fibers," IEEE Photon. Technol. Lett. 14, 1551-1553 (2002).
[CrossRef]

Litchinitser, N. M.

Liu, X.

Q. Li, X. Liu, and H. P. Lee, "Demonstration of narrow-band acoustooptic tunable filters on dispersion-enhanced single-mode fibers," IEEE Photon. Technol. Lett. 14, 1551-1553 (2002).
[CrossRef]

Lopez, F.

Lyytikainen, K.

Mach, P.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

Mägi, E. C.

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
[CrossRef]

Mangan, B. J.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Martelli, C.

Maystre, D.

McPhedran, R. C.

Moore, E. D.

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
[CrossRef]

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Nulsen, A.

Östling, D.

Park, H. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

Provino, L.

Quiquempois, Y.

Reeves, W. H.

Renversez, G.

Riishede, J.

Rogers, J. A.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

Russell, P. St. J.

Sagrini, A.

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Scolari, L.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

Steel, M.

Steinvurzel, P.

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Wadsworth, W. J.

Wang, A.

Westbrook, P.

White, T.

White, T. P.

Windeler, R.

Windeler, R. S.

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Xu, Y.

Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yariv, A.

Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yeom, D. I.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

Yun, S. H.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, and J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable micro fluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002)
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Electron. Lett. (1)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, "Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity," IEEE Photon. Technol. Lett. 17, 2646-2648 (2005).
[CrossRef]

Q. Li, X. Liu, and H. P. Lee, "Demonstration of narrow-band acoustooptic tunable filters on dispersion-enhanced single-mode fibers," IEEE Photon. Technol. Lett. 14, 1551-1553 (2002).
[CrossRef]

J. Lightwave Technol. (2)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

M. W. Haakestad and H. E. Engan, "Acoustooptic properties of a weakly multimode solid core photonic crystal fiber," J. Lightwave Technol. 24, 838-845 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
[CrossRef] [PubMed]

P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
[CrossRef] [PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890-3895 (2005).
[CrossRef] [PubMed]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
[CrossRef] [PubMed]

Opt. Lett. (8)

A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005).
[CrossRef] [PubMed]

A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Anti-resonant reflecting photonic crystal optical waveguides," Opt. Lett. 271592-1594 (2002).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
[CrossRef]

D. Östling and H. E. Engan, "Narrow-band acousto-optic tunable filtering in a two-mode fiber," Opt. Lett. 20, 1247-1249 (1995)
[CrossRef] [PubMed]

H. S. Kim, S. H. Yun, I. K, Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2013-2015 (2006).
[CrossRef]

Science (2)

P. St. J. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Cross-sectional image of the fiber used in the experiment, (b) measured transmission spectrum of the PBGF, and (c) a schematic diagram of the acoustic device embodiment.

Fig. 2.
Fig. 2.

Measured transmission spectrum of the AO resonance coupled to the LP11-like mode in 6th band using polarized light. The simulated intensity profiles of the fundamental mode and LP11-like mode are also shown.

Fig. 3.
Fig. 3.

(a). Tuning properties of the AO resonance in 6th transmission band. The spectra are vertically offset by -20 dB in each frequency step for clear visualization. (b) The tuning slope of the center wavelength of the resonance as a function of the applied frequency.

Fig. 4.
Fig. 4.

Left axis: Measured (scatter plots) and simulated (solid lines) optical beat length between the fundamental and anti-symmetric higher order PBGF modes. The scatter plot data are obtained from combining the measured resonance wavelengths as a function of acoustic frequency and the measured acoustic dispersion. Right axis: Simulated PBGF transmission spectrum (loss/m).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ 3 dB = 0.8 λ 2 Δ n g L = 0.8 L B 2 L ( L B λ ) 1

Metrics