Abstract

We propose using a pair of bumps bordering the conventional trench-surrounded metal nano slit in order to confine the surface waves and further enhance the slit transmission. The bump height of 1μm is larger than the depth of penetration on air side of the surface waves. The reflectivity of such bumps is larger than 95%. A very large slit transmission, which is 50% of the energy of the incident beam impinging on the entire size 13μm of the trench-surrounded slit structure, is obtained through the metallic slit of 50nm width and 400nm depth. The bumps enhance the transmission by 1.75 fold.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission
  2. T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
    [CrossRef]
  3. T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
    [CrossRef]
  4. F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
    [CrossRef] [PubMed]
  5. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629 (2004).
    [CrossRef] [PubMed]
  6. A. Degiron and T. W. Ebbesen, “Analysis of the transmssion process through single aperture surrounded by periodic corrugations,” Opt. Express 12,3694 (2004).
    [CrossRef] [PubMed]
  7. J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B, 60,8359 (1999).
    [CrossRef]
  8. J. A. Sánchez-Gil and A. A. Maradudin, “Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects,” Opt. Lett 28,2255 (2003).
    [CrossRef] [PubMed]
  9. D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  11. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett 86,5601 (2001).
    [CrossRef] [PubMed]
  12. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev Lett 89,063901 (2002).
    [CrossRef] [PubMed]
  13. B. Ung and Y Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express 15,1182–1191 (2007).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

2004 (2)

2003 (2)

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and A. A. Maradudin, “Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects,” Opt. Lett 28,2255 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev Lett 89,063901 (2002).
[CrossRef] [PubMed]

2001 (2)

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett 86,5601 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B, 60,8359 (1999).
[CrossRef]

Baudrion, A. L.

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

Degiron, A.

Dereux, A.

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, “Analysis of the transmssion process through single aperture surrounded by periodic corrugations,” Opt. Express 12,3694 (2004).
[CrossRef] [PubMed]

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

Garcìa-Vidal, F. J.

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

González, M. U.

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

Lewen, G. D.

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629 (2004).
[CrossRef] [PubMed]

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

Lezec, J. J.

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

Linke, R. A.

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
[CrossRef]

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects,” Opt. Lett 28,2255 (2003).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B, 60,8359 (1999).
[CrossRef]

Martìn-Moreno, L.

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

Nahata, A.

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

Pellerin, K. M.

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev Lett 89,063901 (2002).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects,” Opt. Lett 28,2255 (2003).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B, 60,8359 (1999).
[CrossRef]

Sheng, Y

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett 86,5601 (2001).
[CrossRef] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629 (2004).
[CrossRef] [PubMed]

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

Ung, B.

Weeber, D. J. C.

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

Yang, F.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev Lett 89,063901 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

D. J. C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett 87,221101 (2005).
[CrossRef]

Nanotechnology (1)

T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications,” Nanotechnology 13,429 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett (2)

J. A. Sánchez-Gil and A. A. Maradudin, “Resonant scattering of surface-plasmon polariton pulses by nanoscale metal defects,” Opt. Lett 28,2255 (2003).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett 24,1972 (2001).
[CrossRef]

Phys. Rev Lett (1)

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev Lett 89,063901 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B, 60,8359 (1999).
[CrossRef]

Phys. Rev. Lett (2)

F. J. Garcìa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett 90,213901 (2003).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett 86,5601 (2001).
[CrossRef] [PubMed]

Other (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the analyzed structures, (a) single slit, (b) periodic set of trenches, (c) trench-surrounded slit and (d) trench-surrounded slit bordering by a pair of bumps.

Fig. 2.
Fig. 2.

Transmission spectra of a slit of width 50nm, thickness 400nm, bordered by two sets of N trenches of width 325nm, depth 50nm and period 620nm. The distance from the first trench to the slit center d=325nm.

Fig. 3.
Fig. 3.

Hy 2 distribution for a plane wave of beam size 13μm normally incident on a nano slit, (a) bordered by 10 pairs of trenches, (b) bordered by 10 pairs of trenches and the SWR pair. In all cases, as =50nm, hs =400nm, d=325nm, aT =325nm and hT =50nm. The size of the rectangular metallic bump is height × width = 1μm × 1μm.

Fig. 4.
Fig. 4.

(a). Surface wave reflectivity of a metallic bump as functions of the height (H) and width (W) of the bump. Hy 2 distribution of a surface wave impinges a bump with different width and height, (b) W=0.5μm H=0.1μm, (c) W=0.5μm H=0.4μm, (d) W=1.0μm H=0.2μm, (e) W=1.0μm H=0.8μm. In all cases, λ0 = 670nm, and εAg =-18+1.16i.

Fig. 5.
Fig. 5.

Transmission of a 10-trench-surrounded slit as a function of the height (square) and the width (triangle) of the SWR. In all cases, as =50nm, hs =400nm, d=325nm, aT =325nm, hT =50nm and λ 0=670nm.

Fig. 6.
Fig. 6.

Transmission spectra of a nano-scaled slit bordered by N pairs of trenches and one pair of SWRs, where N=2, 6, and 10. The black line shows the spectrum of a bare slit for reference. In all cases, as =50nm, hs =400nm, d=325nm, aT =325nm, hT =50nm. The size of the rectangular metallic bump is height × width = 1μm × 1μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H y 2 x = 0 μm e αL × H y + 2 x = 5 μm

Metrics