Abstract

We report on experimental observations of highly collimated beams of radiation generated when a periodic sub-wavelength grating interacts with surface bound plasmon-polariton modes of a thin gold film. We find that the radiation process can be fully described in terms of interference of emission from a dipole antenna array and modeling the structure in this way enables the far-field radiation pattern to be predicted. The directionality, multiplicity and divergence of the beams can be completely described within this framework. Essential to the process are the surface plasmon excitations: these are the driving mechanism behind the beam formation, phase-coupling radiation from the periodic surface structure and thus imposing a spatial coherence. Detailed fitting of the experimental and modeled data indicates the presence of scattering events involving the interaction of two surface plasmon polariton modes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
    [Crossref]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
    [Crossref] [PubMed]
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev 66,163–182 (1944).
    [Crossref]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
    [Crossref] [PubMed]
  5. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
    [Crossref]
  6. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Analyt. Biochem 337,171 (2005).
    [Crossref] [PubMed]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629–3651 (2004).
    [Crossref] [PubMed]
  8. L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
    [Crossref]
  9. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
    [Crossref] [PubMed]
  10. A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag AP-7,S202–S208 (1959).
  11. A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 1: basic features,” IEEE Antennas and Propagation Society International Symposium, 2, 1091–1094 (2003).
  12. D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).
  13. E. Krestshmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun 6,185–187 (1972).
    [Crossref]
  14. J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
    [Crossref]
  15. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
    [Crossref]
  16. K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
    [Crossref] [PubMed]
  17. H. Raether, Springer Tracts in Modern Physics, Vol. 111: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Spinger-Verlag Berlin Heidelberg, 1988).
  18. J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications (McGraw-Hill, 1999).
  19. E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
    [Crossref] [PubMed]
  20. E. Hecht, Optics (Addison-Wesley, 2002).
  21. M. Born and E. WolfPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1965).

2006 (1)

2005 (3)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Analyt. Biochem 337,171 (2005).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (4)

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
[Crossref] [PubMed]

A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 1: basic features,” IEEE Antennas and Propagation Society International Symposium, 2, 1091–1094 (2003).

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

2002 (2)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

1994 (1)

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

1982 (1)

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
[Crossref]

1972 (1)

E. Krestshmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun 6,185–187 (1972).
[Crossref]

1965 (1)

M. Born and E. WolfPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1965).

1959 (1)

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag AP-7,S202–S208 (1959).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev 66,163–182 (1944).
[Crossref]

Adams, A.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
[Crossref] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev 66,163–182 (1944).
[Crossref]

Born, M.

M. Born and E. WolfPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1965).

Chang, C. K.

Chang, S. H.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Chang, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Chen, Y. C.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Degiron, A.

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
[Crossref] [PubMed]

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

Fleisch, D. A.

J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications (McGraw-Hill, 1999).

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Garcia-Vidal, F. L.

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

Gray, S. K.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Hall, D. G.

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

Hansma, P. K.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2002).

Henzie, J.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Hessel, A.

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag AP-7,S202–S208 (1959).

Huang, K. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Jackson, D. R.

A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 1: basic features,” IEEE Antennas and Propagation Society International Symposium, 2, 1091–1094 (2003).

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

King, O.

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

Kraus, J. D.

J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications (McGraw-Hill, 1999).

Krestshmann, E.

E. Krestshmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun 6,185–187 (1972).
[Crossref]

Kuan, C. H.

Kwak, E. S.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Analyt. Biochem 337,171 (2005).
[Crossref] [PubMed]

Lee, C. K.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629–3651 (2004).
[Crossref] [PubMed]

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

Liaw, J. W.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Lin, D. Z.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Lin, M. W.

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Liu, J. M.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Martin-Moreno, L.

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Moreland, J.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
[Crossref]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

Odom, T. W.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Oliner, A. A.

A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 1: basic features,” IEEE Antennas and Propagation Society International Symposium, 2, 1091–1094 (2003).

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag AP-7,S202–S208 (1959).

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

Raether, H.

H. Raether, Springer Tracts in Modern Physics, Vol. 111: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Spinger-Verlag Berlin Heidelberg, 1988).

Shatz, G. C.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Sigg, C.

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

Sullivan, K. G.

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12,3629–3651 (2004).
[Crossref] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

Williams, J. T.

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

Wolf, E.

M. Born and E. WolfPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1965).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

Yang, D. L.

Yeh, C. S.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Yeh, J. T.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14,3503–3511 (2006).
[Crossref] [PubMed]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Yu, L. B.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Zhao, T.

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

Analyt. Biochem (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Analyt. Biochem 337,171 (2005).
[Crossref] [PubMed]

Appl. Opt (1)

K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, “Directional enhanced fluorescence from molecules near a periodic surface,” Appl. Opt 33,2447–2454 (1994).
[Crossref] [PubMed]

IEEE Antennas and Propagation Society International Symposium (2)

A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 1: basic features,” IEEE Antennas and Propagation Society International Symposium, 2, 1091–1094 (2003).

D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part 2: Leaky-wave antenna model,” IEEE Antennas and Propagation Society International Symposium 2,1095–1098 (2003).

IRE Trans. Antennas Propag (1)

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag AP-7,S202–S208 (1959).

Nano. Lett (1)

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Shatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano. Lett 5,1963–1967 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology,  13,429–432 (2002).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424,824–830 (2003).
[Crossref] [PubMed]

Opt. Commun (1)

E. Krestshmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun 6,185–187 (1972).
[Crossref]

Opt. Express (2)

Phys. Rev (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev 66,163–182 (1944).
[Crossref]

Phys. Rev. B (2)

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25,2297–2300 (1982).
[Crossref]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71,041405-1–041405-4 (2005).
[Crossref]

Phys. Rev. Lett (1)

L. Martin-Moreno, F. L. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of higly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett 90,167401-1–167401-4 (2003).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperture,” Science 297,820–822 (2002).
[Crossref] [PubMed]

Other (4)

E. Hecht, Optics (Addison-Wesley, 2002).

M. Born and E. WolfPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1965).

H. Raether, Springer Tracts in Modern Physics, Vol. 111: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Spinger-Verlag Berlin Heidelberg, 1988).

J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications (McGraw-Hill, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) A bright wide-field image captured with a x5 objective lens of four 100×100 μm gratings. (b) A schematic diagram of SP excitation and beam formation. (c) The gratings structures under laser excitation.

Fig. 2.
Fig. 2.

Re-constructed images of the beams generated by (a) a 450 nm pitch grating, (b) a 550 nm pitch grating, (c) a 750 nm pitch grating and (d) a 900 nm pitch grating. In (a) and (b) it is also possible to make out beams from adjacent gratings in the periphery of the images.

Fig. 3.
Fig. 3.

A re-constructed image, plotted on a grey-scale of gratings with 10 and 50 lines located at 400 and 600 μm on the linescan distance axis. The solid white lines form a guide for the eye.

Fig. 4.
Fig. 4.

Polar plots of the normalized electric field of 550 (blue line), 650 (red line) and 750 nm (black line) pitch antenna arrays where the number of elements n is (a) 10 and (b) 50.

Fig 5.
Fig 5.

Far-field emission angle plotted as a function of grating pitch. The data points represent the experimental data while the solid lines show the fits generated by the antenna array model.

Fig 6.
Fig 6.

The far-field phase (blue line) and beam amplitude (red line) plotted as a function of angle. A maximum of the E-field occurs whenever ψ is a multiple of 2π.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E = ( 1 n ) sin ( 2 ) sin ( ψ 2 )
ψ = 2 π Λ λ cos θ + δ
δ = 2 π Λ λ sp
m k g = k 0 cos θ + k sp
m k g = k 0 cos θ + 2 k sp

Metrics