Abstract

This work presents a theoretical study of using the interference of multiple counter-propagating evanescent waves as a lithography technique to print periodic two dimensional features. The formulation of the three dimensional Cartesian space expression of an evanescent wave is presented. In this work, the evanescent wave is generated by the total internal reflection of a plane wave at the interface between a incident dielectric material and a weakly absorbing transmission medium. The influences of polarization, incident angle and the phase shifting of the incident plane waves on the evanescent wave interference are studied. Numerical simulation results suggest that this technique enables fabrication of periodic two dimensional features with resolution less than one third the wavelength of the irradiation source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Schellenberg, "The next generation of RET,"Adv. Microlithogr. Technol. 5645, 1-13 (2005).
  2. H. B. Burnett et al., "Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography," JM35, 13008 (2006).
  3. S. Kusumoto et al., "Advanced materials for 193 nm immersion lithography," Polym. Adv. Technol. 17122 (2006).
    [CrossRef]
  4. W. Hinsberg and F. Houle, "Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography," J. Vac. Sci. Technol. B 232427 (2005).
    [CrossRef]
  5. T. Niiyama and A. Kawai, "Formation factors of watermark for immersion lithography" Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers, 45 5383 (2006).
    [CrossRef]
  6. B. W. Smith,  et al., "Water immersion optical lithography at 193nm," JM33, 44 (2004).
  7. L. P. Ghislain,  et al., "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74,501 (1999).
    [CrossRef]
  8. D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
    [CrossRef]
  9. Q. Wu et al., "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75,4064 (1999).
    [CrossRef]
  10. G. S. Kino, "Application and theory of immersion lens," Proc. SPIE 3609,56-66 (1999).
    [CrossRef]
  11. B. D. Terris et al., "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65,388 (1994).
    [CrossRef]
  12. T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
    [CrossRef]
  13. T. Milster et al., " Maskless lithography with the solid immersion lens nanoprobes," Proc. SPIE 5567,545-556 (2004).
    [CrossRef]
  14. R. J. Blaikie and S. J. McNab, "Evanescent interferometric lithography," Appl. Opt. 40,1692 (2001).
    [CrossRef]
  15. K. A. Stetson, "Holography with total internally reflected light," Appl. Phys. Lett. 11,225 (1967).
    [CrossRef]
  16. K. A. Stetson, "Improved Resolution and signal to noise ratios in total internal reflection holograms," Appl. Phys. Lett. 12,362 (1968).
    [CrossRef]
  17. S. Sainov et al., "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A, Pure Appl. Opt. 5,142 (2003).
    [CrossRef]
  18. P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester," Opt. Lett. 28,2375 (2003).
    [CrossRef] [PubMed]
  19. B. W. Smith et al., "Evanescent wave imaging in optical lithography," Proc. SPIE. 6154,61540A. (2006).
    [CrossRef]
  20. Y. Ohdaira,  et al., "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86,051102 (2005).
    [CrossRef]
  21. J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt. A, Pure Appl. Opt. 8,213 (2006).
    [CrossRef]
  22. F. de Fornel, Evanescent Waves (Springer 2000).
  23. E. Hecht, Optics (Adison Wesley 4th ed.).
  24. M. Born and E. Wolf, Principles of Optics (6th Corrected ed., Pergamon Press, 1983).
  25. F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
    [CrossRef]
  26. S. Sainov and R. Stoycheva-Topalova, "Total internal reflection holographic recording in very thin films," J. Opt. A, Pure Appl. Opt. 2,117 (2000).
    [CrossRef]

2006

S. Kusumoto et al., "Advanced materials for 193 nm immersion lithography," Polym. Adv. Technol. 17122 (2006).
[CrossRef]

B. W. Smith et al., "Evanescent wave imaging in optical lithography," Proc. SPIE. 6154,61540A. (2006).
[CrossRef]

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt. A, Pure Appl. Opt. 8,213 (2006).
[CrossRef]

2005

Y. Ohdaira,  et al., "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86,051102 (2005).
[CrossRef]

W. Hinsberg and F. Houle, "Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography," J. Vac. Sci. Technol. B 232427 (2005).
[CrossRef]

F. M. Schellenberg, "The next generation of RET,"Adv. Microlithogr. Technol. 5645, 1-13 (2005).

2004

D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
[CrossRef]

T. Milster et al., " Maskless lithography with the solid immersion lens nanoprobes," Proc. SPIE 5567,545-556 (2004).
[CrossRef]

2003

S. Sainov et al., "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A, Pure Appl. Opt. 5,142 (2003).
[CrossRef]

P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester," Opt. Lett. 28,2375 (2003).
[CrossRef] [PubMed]

2001

2000

S. Sainov and R. Stoycheva-Topalova, "Total internal reflection holographic recording in very thin films," J. Opt. A, Pure Appl. Opt. 2,117 (2000).
[CrossRef]

1999

Q. Wu et al., "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75,4064 (1999).
[CrossRef]

G. S. Kino, "Application and theory of immersion lens," Proc. SPIE 3609,56-66 (1999).
[CrossRef]

T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
[CrossRef]

L. P. Ghislain,  et al., "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74,501 (1999).
[CrossRef]

1996

F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
[CrossRef]

1994

B. D. Terris et al., "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65,388 (1994).
[CrossRef]

1968

K. A. Stetson, "Improved Resolution and signal to noise ratios in total internal reflection holograms," Appl. Phys. Lett. 12,362 (1968).
[CrossRef]

1967

K. A. Stetson, "Holography with total internally reflected light," Appl. Phys. Lett. 11,225 (1967).
[CrossRef]

Blaikie, R. J.

Chen, T.

D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain,  et al., "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74,501 (1999).
[CrossRef]

Hinsberg, W.

W. Hinsberg and F. Houle, "Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography," J. Vac. Sci. Technol. B 232427 (2005).
[CrossRef]

Hirota, K.

T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
[CrossRef]

Houle, F.

W. Hinsberg and F. Houle, "Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography," J. Vac. Sci. Technol. B 232427 (2005).
[CrossRef]

Jo, J. S.

T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
[CrossRef]

Kaneko, F.

F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
[CrossRef]

Kino, G. S.

G. S. Kino, "Application and theory of immersion lens," Proc. SPIE 3609,56-66 (1999).
[CrossRef]

Kusumoto, S.

S. Kusumoto et al., "Advanced materials for 193 nm immersion lithography," Polym. Adv. Technol. 17122 (2006).
[CrossRef]

Martinez-Anton, J. C.

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt. A, Pure Appl. Opt. 8,213 (2006).
[CrossRef]

Masamichi, K.

F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
[CrossRef]

McNab, S. J.

Milster, T.

T. Milster et al., " Maskless lithography with the solid immersion lens nanoprobes," Proc. SPIE 5567,545-556 (2004).
[CrossRef]

T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
[CrossRef]

Milster, T. D.

D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
[CrossRef]

Miyamoto, H.

F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
[CrossRef]

Nam, D.

D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
[CrossRef]

Ohdaira, Y.

Y. Ohdaira,  et al., "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86,051102 (2005).
[CrossRef]

Ramanujam, P. S.

Sainov, S.

S. Sainov et al., "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A, Pure Appl. Opt. 5,142 (2003).
[CrossRef]

S. Sainov and R. Stoycheva-Topalova, "Total internal reflection holographic recording in very thin films," J. Opt. A, Pure Appl. Opt. 2,117 (2000).
[CrossRef]

Schellenberg, F. M.

F. M. Schellenberg, "The next generation of RET,"Adv. Microlithogr. Technol. 5645, 1-13 (2005).

Smith, B. W.

B. W. Smith et al., "Evanescent wave imaging in optical lithography," Proc. SPIE. 6154,61540A. (2006).
[CrossRef]

Stetson, K. A.

K. A. Stetson, "Improved Resolution and signal to noise ratios in total internal reflection holograms," Appl. Phys. Lett. 12,362 (1968).
[CrossRef]

K. A. Stetson, "Holography with total internally reflected light," Appl. Phys. Lett. 11,225 (1967).
[CrossRef]

Stoycheva-Topalova, R.

S. Sainov and R. Stoycheva-Topalova, "Total internal reflection holographic recording in very thin films," J. Opt. A, Pure Appl. Opt. 2,117 (2000).
[CrossRef]

Terris, B. D.

B. D. Terris et al., "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65,388 (1994).
[CrossRef]

Wu, Q.

Q. Wu et al., "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75,4064 (1999).
[CrossRef]

Adv. Microlithogr. Technol.

F. M. Schellenberg, "The next generation of RET,"Adv. Microlithogr. Technol. 5645, 1-13 (2005).

Appl. Opt

T. Milster, J. S. Jo, and K. Hirota, "Roles of propagating and evanescent waves in solid immersion system," Appl. Opt 38,5046 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. A. Stetson, "Holography with total internally reflected light," Appl. Phys. Lett. 11,225 (1967).
[CrossRef]

K. A. Stetson, "Improved Resolution and signal to noise ratios in total internal reflection holograms," Appl. Phys. Lett. 12,362 (1968).
[CrossRef]

B. D. Terris et al., "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65,388 (1994).
[CrossRef]

Y. Ohdaira,  et al., "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86,051102 (2005).
[CrossRef]

L. P. Ghislain,  et al., "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74,501 (1999).
[CrossRef]

Q. Wu et al., "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75,4064 (1999).
[CrossRef]

J. Chem. Phys.

F. Kaneko, H. Miyamoto and K. Masamichi, "Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds," J. Chem. Phys. 105,4812 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. Sainov and R. Stoycheva-Topalova, "Total internal reflection holographic recording in very thin films," J. Opt. A, Pure Appl. Opt. 2,117 (2000).
[CrossRef]

S. Sainov et al., "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A, Pure Appl. Opt. 5,142 (2003).
[CrossRef]

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt. A, Pure Appl. Opt. 8,213 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

W. Hinsberg and F. Houle, "Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography," J. Vac. Sci. Technol. B 232427 (2005).
[CrossRef]

Opt. Lett.

Polym. Adv. Technol.

S. Kusumoto et al., "Advanced materials for 193 nm immersion lithography," Polym. Adv. Technol. 17122 (2006).
[CrossRef]

Proc. SPIE

T. Milster et al., " Maskless lithography with the solid immersion lens nanoprobes," Proc. SPIE 5567,545-556 (2004).
[CrossRef]

G. S. Kino, "Application and theory of immersion lens," Proc. SPIE 3609,56-66 (1999).
[CrossRef]

D. Nam, T. D. Milster, and T. Chen, "Potential of solid immersion lithography using I-line and KrF light source," Proc. SPIE 5754,1049-1055 (2004).
[CrossRef]

Proc. SPIE.

B. W. Smith et al., "Evanescent wave imaging in optical lithography," Proc. SPIE. 6154,61540A. (2006).
[CrossRef]

Other

F. de Fornel, Evanescent Waves (Springer 2000).

E. Hecht, Optics (Adison Wesley 4th ed.).

M. Born and E. Wolf, Principles of Optics (6th Corrected ed., Pergamon Press, 1983).

T. Niiyama and A. Kawai, "Formation factors of watermark for immersion lithography" Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers, 45 5383 (2006).
[CrossRef]

B. W. Smith,  et al., "Water immersion optical lithography at 193nm," JM33, 44 (2004).

H. B. Burnett et al., "Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography," JM35, 13008 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.(a)
Fig. 1.(a)

Evanescent wave generated by TIR in two dimensional space

Fig. 1. (b).
Fig. 1. (b).

Evanescent wave generated by TIR in three dimensional space

Fig. 2.
Fig. 2.

Four counter-propagating evanescent waves generated by TIR of four precisely orientated incident beams in a dielectric medium

Fig. 3.
Fig. 3.

Normalized spatial intensity distribution at interface (z=0) generated by counter-propagating EWs of (a) s-polarization and (b) elliptical polarization. The incident angle is 75° and the angular spacing ϕ between adjacent incident beams is 90°.

Fig. 4.
Fig. 4.

Normalized intensity profile in the second medium along y=x for the (a) s-polarization EWs interference (b) elliptical polarization EWs interference.

Fig. 5.
Fig. 5.

Comparison of the through-depth intensity decay profile the s-polarization EWs interference and elliptical polarization EWs interference.

Fig. 6.
Fig. 6.

The through-depth intensity decay profiles with increasing incidence angle values for (a) s-polarization EWs interference and (b) elliptical polarization EWs interference

Fig. 7.
Fig. 7.

The intensity distribution at interface achieved with π phase difference between adjacent incident beams of (δϵ = π) for elliptical- polarization EWs interference. The incident angle is 75°.

Fig. 8.
Fig. 8.

The normlaized intensity distribution at interface achieved with π/2 phase difference between adjacent incident beams (δε =π/2 ) for (a) s-polarization EWs interference (b) elliptical polarization EWs interference.

Fig. 10.
Fig. 10.

The influence of the phase difference between adjacent incident beams on the through-depth intensity characteristic profile for (a) s-polarization EWs intereference (b) elliptical polarization EWs interference.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ψ en = E e ( x , y , z ) exp ( i k t r )
= E e ( x , y , z ) exp ( i 2 π n i λ ( sin θ i cos φ i x + sin θ i sin φ i y ) ) exp ( 2 π n i λ sin 2 θ i n ti 2 z )
E e ( x , y , z ) = R × M × T × E in ( s , p , Ϛ )
E in ( s , p , Ϛ ) = [ E s E p 0 ]
T = [ t s 0 0 0 t p 0 0 0 t s ]
t s = 2 n i cos θ i n i cos θ n + u t + iv t = τ s exp ( i χ s )
τ s = 2 n i cos θ i ( n i cos θ n + u t ) 2 + v t 2 and χ s = tan 1 ( v t n i cos θ i + u t )
t p = 2 [ n t 2 ( 1 k t 2 ) + i 2 n t 2 k t 2 ] cos θ i [ n t 2 ( 1 k t 2 ) + i 2 n t 2 k t 2 ] cos θ i + n i ( u t + iv t ) = τ p exp ( p )
τ p = 2 n t 2 ( 1 + k t 2 ) cos θ i { [ n t 2 ( 1 k t 2 ) cos θ i + n i u t ] 2 + [ 2 n t 2 k t cos θ i + n i v t ] 2 } 1 2
χ p = tan 1 { n i [ 2 k i u t ( 1 k t 2 ) v t ] n t 2 ( 1 + k t 2 ) 2 cos θ i + n i [ 2 k t v t + ( 1 k t 2 ) u t ] }
2 u t 2 = n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i + [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] 2 + 4 n t 4 k t 2
and
2 v t 2 = [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] + [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] 2 + 4 n t 4 k t 2
u t = n ti n t k t sin 2 θ i n ti 2 and v t = n i sin 2 θ i n ti 2
M = [ 1 0 0 0 cos θ e sin θ e 0 sin θ e cos θ e ]
sin θ e = n i sin θ i n t
and
cos θ e = i 1 n ti sin 2 θ i n ti 2
= 1 n ti sin 2 θ i n ti 2 exp ( i π 2 )
R = [ sin ϕ i cos ϕ i 0 cos ϕ i sin ϕ i 0 0 0 1 ]
E e x y z = [ τ s sin ϕ i E s exp ( s ) + ( τ p n ti ) sin 2 θ i n ti 2 cos ϕ i E p exp ( i ( χ p + π 2 ) ) τ s cos ϕ i E s exp ( s ) + ( τ p n ti ) sin 2 θ i n ti 2 sin ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin θ i E p exp ( i χ p ) ]
E e x y z = [ τ s sin ϕ i E s exp ( s ) τ s cos ϕ i E s exp ( s ) 0 ]
E e x y z = [ ( τ p n ti ) sin 2 θ i n ti 2 cos ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin 2 θ i n ti 2 sin ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin θ i E p exp ( p ) ]
ψ e t = Σ n = 1 m ψ e n
I e n = ψ e t ψ e t *
E in s p Ϛ = [ E s E p 0 ] exp

Metrics