Abstract

This work presents a theoretical study of using the interference of multiple counter-propagating evanescent waves as a lithography technique to print periodic two dimensional features. The formulation of the three dimensional Cartesian space expression of an evanescent wave is presented. In this work, the evanescent wave is generated by the total internal reflection of a plane wave at the interface between a incident dielectric material and a weakly absorbing transmission medium. The influences of polarization, incident angle and the phase shifting of the incident plane waves on the evanescent wave interference are studied. Numerical simulation results suggest that this technique enables fabrication of periodic two dimensional features with resolution less than one third the wavelength of the irradiation source.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-scale three dimensional surface relief features using single exposure counter-propagating multiple evanescent waves interference phenomenon

Vadakke Matham Murukeshan, Jeun Kee Chua, Sia Kim Tan, and Qun Yin Lin
Opt. Express 16(18) 13857-13870 (2008)

Properties of induced polarization evanescent reflection with a solid immersion lens (SIL)

Tao Chen and Tom D. Milster
Opt. Express 15(3) 1191-1204 (2007)

Effects of optical variables in immersion lens-based near-field optics

Wan-Chin Kim, Yong-Joong Yoon, Hyun Choi, No-Cheol Park, and Young-Pil Park
Opt. Express 16(18) 13933-13948 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. M. Schellenberg, “The next generation of RET,” Advanced Microlithography Technologies, 5645, 1–13 (2005).
  2. H. B. Burnettet al., “Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography,” JM3 5,13008 (2006).
  3. S. Kusumotoet al., “Advanced materials for 193 nm immersion lithography,” Polymers for Advanced Technologies, 17122 (2006).
    [Crossref]
  4. W. Hinsberg and F. Houle, “Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography,“ J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 232427 (2005).
    [Crossref]
  5. T. Niiyama and A. Kawai, “Formation factors of watermark for immersion lithography” Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers,  455383 (2006).
    [Crossref]
  6. B. W. Smith, et al., “Water immersion optical lithography at 193nm,” JM3 3,44 (2004).
  7. L. P. Ghislain, et al., “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74,501 (1999).
    [Crossref]
  8. D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
    [Crossref]
  9. Q. Wuet al., “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75,4064 (1999).
    [Crossref]
  10. G. S. Kino, “Application and theory of immersion lens,” Proc. SPIE 3609,56–66 (1999).
    [Crossref]
  11. B.D Terriset al., “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65,388 (1994).
    [Crossref]
  12. T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
    [Crossref]
  13. T. Milsteret al., “Maskless lithography with the solid immersion lens nanoprobes,” Proc. SPIE 5567,545–556 (2004).
    [Crossref]
  14. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40,1692 (2001).
    [Crossref]
  15. K. A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11,225 (1967).
    [Crossref]
  16. K. A. Stetson, “Improved Resolution and signal to noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12,362 (1968).
    [Crossref]
  17. S. Sainovet al., “High spatial frequency evanescent wave holographic recording in photopolymers,” J. Optics A 5,142 (2003).
    [Crossref]
  18. P. S. Ramanujam, “Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester,” Opt. Lett. 28,2375 (2003).
    [Crossref] [PubMed]
  19. B. W. Smithet al., “Evanescent wave imaging in optical lithography,” Proc. SPIE. 6154,61540A. (2006).
    [Crossref]
  20. Y. Ohdairaet al., “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86,051102 (2005).
    [Crossref]
  21. J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure and Appl. Opt. 8,213 (2006).
    [Crossref]
  22. F. de Fornel, Evanescent Waves (Springer2000).
  23. E. Hecht, Optics (Adison Wesley 4th ed).
  24. M. Born and E. Wolf, Principles of Optics (6th Corrected ed., Pergamon Press, 1983).
  25. F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
    [Crossref]
  26. S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A, Pure and Appl. Opt. 2,117 (2000).
    [Crossref]

2006 (5)

H. B. Burnettet al., “Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography,” JM3 5,13008 (2006).

S. Kusumotoet al., “Advanced materials for 193 nm immersion lithography,” Polymers for Advanced Technologies, 17122 (2006).
[Crossref]

T. Niiyama and A. Kawai, “Formation factors of watermark for immersion lithography” Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers,  455383 (2006).
[Crossref]

B. W. Smithet al., “Evanescent wave imaging in optical lithography,” Proc. SPIE. 6154,61540A. (2006).
[Crossref]

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure and Appl. Opt. 8,213 (2006).
[Crossref]

2005 (3)

Y. Ohdairaet al., “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86,051102 (2005).
[Crossref]

F. M. Schellenberg, “The next generation of RET,” Advanced Microlithography Technologies, 5645, 1–13 (2005).

W. Hinsberg and F. Houle, “Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography,“ J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 232427 (2005).
[Crossref]

2004 (3)

B. W. Smith, et al., “Water immersion optical lithography at 193nm,” JM3 3,44 (2004).

D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
[Crossref]

T. Milsteret al., “Maskless lithography with the solid immersion lens nanoprobes,” Proc. SPIE 5567,545–556 (2004).
[Crossref]

2003 (2)

S. Sainovet al., “High spatial frequency evanescent wave holographic recording in photopolymers,” J. Optics A 5,142 (2003).
[Crossref]

P. S. Ramanujam, “Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester,” Opt. Lett. 28,2375 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A, Pure and Appl. Opt. 2,117 (2000).
[Crossref]

1999 (4)

T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
[Crossref]

Q. Wuet al., “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75,4064 (1999).
[Crossref]

G. S. Kino, “Application and theory of immersion lens,” Proc. SPIE 3609,56–66 (1999).
[Crossref]

L. P. Ghislain, et al., “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74,501 (1999).
[Crossref]

1996 (1)

F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
[Crossref]

1994 (1)

B.D Terriset al., “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65,388 (1994).
[Crossref]

1968 (1)

K. A. Stetson, “Improved Resolution and signal to noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12,362 (1968).
[Crossref]

1967 (1)

K. A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11,225 (1967).
[Crossref]

Blaikie, R. J.

Burnett, H. B.

H. B. Burnettet al., “Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography,” JM3 5,13008 (2006).

Chen, T.

D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
[Crossref]

de Fornel, F.

F. de Fornel, Evanescent Waves (Springer2000).

Ghislain, L. P.

L. P. Ghislain, et al., “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74,501 (1999).
[Crossref]

Hinsberg, W.

W. Hinsberg and F. Houle, “Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography,“ J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 232427 (2005).
[Crossref]

Hirota, K.

T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
[Crossref]

Houle, F.

W. Hinsberg and F. Houle, “Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography,“ J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 232427 (2005).
[Crossref]

Jo, J. S.

T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
[Crossref]

Kaneko, F.

F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
[Crossref]

Kawai, A.

T. Niiyama and A. Kawai, “Formation factors of watermark for immersion lithography” Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers,  455383 (2006).
[Crossref]

Kino, G. S.

G. S. Kino, “Application and theory of immersion lens,” Proc. SPIE 3609,56–66 (1999).
[Crossref]

Kusumoto, S.

S. Kusumotoet al., “Advanced materials for 193 nm immersion lithography,” Polymers for Advanced Technologies, 17122 (2006).
[Crossref]

Martinez-Anton, J. C.

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure and Appl. Opt. 8,213 (2006).
[Crossref]

Masamichi, K.

F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
[Crossref]

McNab, S. J.

Milster, T.

T. Milsteret al., “Maskless lithography with the solid immersion lens nanoprobes,” Proc. SPIE 5567,545–556 (2004).
[Crossref]

T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
[Crossref]

Milster, T. D.

D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
[Crossref]

Miyamoto, H.

F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
[Crossref]

Nam, D.

D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
[Crossref]

Niiyama, T.

T. Niiyama and A. Kawai, “Formation factors of watermark for immersion lithography” Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers,  455383 (2006).
[Crossref]

Ohdaira, Y.

Y. Ohdairaet al., “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86,051102 (2005).
[Crossref]

Ramanujam, P. S.

Sainov, S.

S. Sainovet al., “High spatial frequency evanescent wave holographic recording in photopolymers,” J. Optics A 5,142 (2003).
[Crossref]

S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A, Pure and Appl. Opt. 2,117 (2000).
[Crossref]

Schellenberg, F. M.

F. M. Schellenberg, “The next generation of RET,” Advanced Microlithography Technologies, 5645, 1–13 (2005).

Smith, B. W.

B. W. Smithet al., “Evanescent wave imaging in optical lithography,” Proc. SPIE. 6154,61540A. (2006).
[Crossref]

B. W. Smith, et al., “Water immersion optical lithography at 193nm,” JM3 3,44 (2004).

Stetson, K. A.

K. A. Stetson, “Improved Resolution and signal to noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12,362 (1968).
[Crossref]

K. A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11,225 (1967).
[Crossref]

Stoycheva-Topalova, R.

S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A, Pure and Appl. Opt. 2,117 (2000).
[Crossref]

Terris, B.D

B.D Terriset al., “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65,388 (1994).
[Crossref]

Wu, Q.

Q. Wuet al., “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75,4064 (1999).
[Crossref]

Advanced Microlithography Technologies (1)

F. M. Schellenberg, “The next generation of RET,” Advanced Microlithography Technologies, 5645, 1–13 (2005).

Appl. Opt (1)

T. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion system,” Appl. Opt 38,5046 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

K. A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11,225 (1967).
[Crossref]

K. A. Stetson, “Improved Resolution and signal to noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12,362 (1968).
[Crossref]

B.D Terriset al., “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65,388 (1994).
[Crossref]

L. P. Ghislain, et al., “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74,501 (1999).
[Crossref]

Q. Wuet al., “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75,4064 (1999).
[Crossref]

Y. Ohdairaet al., “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86,051102 (2005).
[Crossref]

J. Chem. Phys. (1)

F. Kaneko, H. Miyamoto, and K. Masamichi, “Polarized infrared attenuated total reflection spectroscopy for three dimensional structural analysis on long chain compounds,” J. Chem. Phys. 105,4812 (1996).
[Crossref]

J. Opt. A, Pure and Appl. Opt. (2)

S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A, Pure and Appl. Opt. 2,117 (2000).
[Crossref]

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure and Appl. Opt. 8,213 (2006).
[Crossref]

J. Optics A (1)

S. Sainovet al., “High spatial frequency evanescent wave holographic recording in photopolymers,” J. Optics A 5,142 (2003).
[Crossref]

J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures (1)

W. Hinsberg and F. Houle, “Numeric analysis of the role of liquid phase ultraviolet photochemistry in 193 nm immersion lithography,“ J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 232427 (2005).
[Crossref]

JM3 (2)

H. B. Burnettet al., “Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography,” JM3 5,13008 (2006).

B. W. Smith, et al., “Water immersion optical lithography at 193nm,” JM3 3,44 (2004).

Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers (1)

T. Niiyama and A. Kawai, “Formation factors of watermark for immersion lithography” Jpn. J. Appl. Phys., Part 1 Regular Papers and Short Notes and Review Papers,  455383 (2006).
[Crossref]

Opt. Lett. (1)

Polymers for Advanced Technologies (1)

S. Kusumotoet al., “Advanced materials for 193 nm immersion lithography,” Polymers for Advanced Technologies, 17122 (2006).
[Crossref]

Proc. SPIE (3)

G. S. Kino, “Application and theory of immersion lens,” Proc. SPIE 3609,56–66 (1999).
[Crossref]

D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754.1049–1055 (2004).
[Crossref]

T. Milsteret al., “Maskless lithography with the solid immersion lens nanoprobes,” Proc. SPIE 5567,545–556 (2004).
[Crossref]

Proc. SPIE. (1)

B. W. Smithet al., “Evanescent wave imaging in optical lithography,” Proc. SPIE. 6154,61540A. (2006).
[Crossref]

Other (3)

F. de Fornel, Evanescent Waves (Springer2000).

E. Hecht, Optics (Adison Wesley 4th ed).

M. Born and E. Wolf, Principles of Optics (6th Corrected ed., Pergamon Press, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.(a)
Fig. 1.(a)

Evanescent wave generated by TIR in two dimensional space

Fig. 1. (b).
Fig. 1. (b).

Evanescent wave generated by TIR in three dimensional space

Fig. 2.
Fig. 2.

Four counter-propagating evanescent waves generated by TIR of four precisely orientated incident beams in a dielectric medium

Fig. 3.
Fig. 3.

Normalized spatial intensity distribution at interface (z=0) generated by counter-propagating EWs of (a) s-polarization and (b) elliptical polarization. The incident angle is 75° and the angular spacing ϕ between adjacent incident beams is 90°.

Fig. 4.
Fig. 4.

Normalized intensity profile in the second medium along y=x for the (a) s-polarization EWs interference (b) elliptical polarization EWs interference.

Fig. 5.
Fig. 5.

Comparison of the through-depth intensity decay profile the s-polarization EWs interference and elliptical polarization EWs interference.

Fig. 6.
Fig. 6.

The through-depth intensity decay profiles with increasing incidence angle values for (a) s-polarization EWs interference and (b) elliptical polarization EWs interference

Fig. 7.
Fig. 7.

The intensity distribution at interface achieved with π phase difference between adjacent incident beams of (δϵ = π) for elliptical- polarization EWs interference. The incident angle is 75°.

Fig. 8.
Fig. 8.

The normlaized intensity distribution at interface achieved with π/2 phase difference between adjacent incident beams (δε =π/2 ) for (a) s-polarization EWs interference (b) elliptical polarization EWs interference.

Fig. 10.
Fig. 10.

The influence of the phase difference between adjacent incident beams on the through-depth intensity characteristic profile for (a) s-polarization EWs intereference (b) elliptical polarization EWs interference.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ψ en = E e ( x , y , z ) exp ( i k t r )
= E e ( x , y , z ) exp ( i 2 π n i λ ( sin θ i cos φ i x + sin θ i sin φ i y ) ) exp ( 2 π n i λ sin 2 θ i n ti 2 z )
E e ( x , y , z ) = R × M × T × E in ( s , p , Ϛ )
E in ( s , p , Ϛ ) = [ E s E p 0 ]
T = [ t s 0 0 0 t p 0 0 0 t s ]
t s = 2 n i cos θ i n i cos θ n + u t + iv t = τ s exp ( i χ s )
τ s = 2 n i cos θ i ( n i cos θ n + u t ) 2 + v t 2 and χ s = tan 1 ( v t n i cos θ i + u t )
t p = 2 [ n t 2 ( 1 k t 2 ) + i 2 n t 2 k t 2 ] cos θ i [ n t 2 ( 1 k t 2 ) + i 2 n t 2 k t 2 ] cos θ i + n i ( u t + iv t ) = τ p exp ( p )
τ p = 2 n t 2 ( 1 + k t 2 ) cos θ i { [ n t 2 ( 1 k t 2 ) cos θ i + n i u t ] 2 + [ 2 n t 2 k t cos θ i + n i v t ] 2 } 1 2
χ p = tan 1 { n i [ 2 k i u t ( 1 k t 2 ) v t ] n t 2 ( 1 + k t 2 ) 2 cos θ i + n i [ 2 k t v t + ( 1 k t 2 ) u t ] }
2 u t 2 = n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i + [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] 2 + 4 n t 4 k t 2
and
2 v t 2 = [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] + [ n t 2 ( 1 k t 2 ) n i 2 sin 2 θ i ] 2 + 4 n t 4 k t 2
u t = n ti n t k t sin 2 θ i n ti 2 and v t = n i sin 2 θ i n ti 2
M = [ 1 0 0 0 cos θ e sin θ e 0 sin θ e cos θ e ]
sin θ e = n i sin θ i n t
and
cos θ e = i 1 n ti sin 2 θ i n ti 2
= 1 n ti sin 2 θ i n ti 2 exp ( i π 2 )
R = [ sin ϕ i cos ϕ i 0 cos ϕ i sin ϕ i 0 0 0 1 ]
E e x y z = [ τ s sin ϕ i E s exp ( s ) + ( τ p n ti ) sin 2 θ i n ti 2 cos ϕ i E p exp ( i ( χ p + π 2 ) ) τ s cos ϕ i E s exp ( s ) + ( τ p n ti ) sin 2 θ i n ti 2 sin ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin θ i E p exp ( i χ p ) ]
E e x y z = [ τ s sin ϕ i E s exp ( s ) τ s cos ϕ i E s exp ( s ) 0 ]
E e x y z = [ ( τ p n ti ) sin 2 θ i n ti 2 cos ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin 2 θ i n ti 2 sin ϕ i E p exp ( i ( χ p + π 2 ) ) ( τ p n ti ) sin θ i E p exp ( p ) ]
ψ e t = Σ n = 1 m ψ e n
I e n = ψ e t ψ e t *
E in s p Ϛ = [ E s E p 0 ] exp

Metrics