Abstract

Near-infrared metamaterials that possess a reconfigurable index of refraction from negative through zero to positive values are presented. Reconfigurability is achieved by cladding thin layers of liquid crystal both as a superstrate and a substrate on an established negative-index metamaterial, and adjusting the permittivity of the liquid crystal. Numerical results show that the index of refraction for the proposed structure can be changed over the range from -1 to +1.8 by tuning the liquid crystal permittivity from 2 to 6 at a wavelength of 1.4 μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980).
    [CrossRef]
  2. M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
    [CrossRef] [PubMed]
  3. K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989).
    [CrossRef]
  4. D. K.�Serkland and P.�Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett.�24, 92-94 (1999).
    [CrossRef]
  5. S.�Coen and M.�Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett.�26, 39-41 (2001).
    [CrossRef] [PubMed]
  6. M. E.�Marhic, K. K. Y.�Wong, L. G.�Kazovsky, and T. E.�Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett.�27, 1439-1441 (2002).
    [CrossRef] [PubMed]
  7. S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
    [CrossRef]
  8. J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002)
    [CrossRef] [PubMed]
  9. J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
    [CrossRef] [PubMed]
  10. C. J. S.�de Matos, J. R.�Taylor, and K. P.�Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett.�29, 983-985 (2004).
  11. Y.�Deng, Q.�Lin, F.�Lu, G. P.�Agrawal, and W. H.�Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett.�30, 1234-1236 (2005).
    [CrossRef]
  12. J. S. Y.�Chen, S. G.�Murdoch, R.�Leonhardt, and J. D.�Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express�14, 9491-9501 (2006).
    [CrossRef]
  13. C.�Lin, W. A.�Reed, A. D.�Pearson, and H. T.�Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett.�6, 493-495 (1981).
    [CrossRef]
  14. S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003).
    [CrossRef]
  15. M. E.�Marhic, K. K. Y.�Wong, and L. G.�Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron.�10, 1133-1141 (2004).
  16. J. D.�Harvey, R.�Leonhardt, S.�Coen, G. K. L.�Wong, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett.�28, 2225-2227 (2003).
    [CrossRef]
  17. A. Y. H.�Chen, G. K. L.�Wong, S. G.�Murdoch, R.�Leonhardt, J. D.�Harvey, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett.�30, 762-764 (2005).
  18. G.�Cappellini and S.�Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B�8, 824-838 (1991).
  19. M. E.�Marhic, K. K. Y.�Wong, M. C.�Ho, and L. G.�Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett.�26, 620-622 (2001).
  20. J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

2006 (1)

2005 (2)

2004 (2)

M. E.�Marhic, K. K. Y.�Wong, and L. G.�Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron.�10, 1133-1141 (2004).

C. J. S.�de Matos, J. R.�Taylor, and K. P.�Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett.�29, 983-985 (2004).

2003 (4)

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

J. D.�Harvey, R.�Leonhardt, S.�Coen, G. K. L.�Wong, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett.�28, 2225-2227 (2003).
[CrossRef]

S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003).
[CrossRef]

S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
[CrossRef]

2002 (3)

2001 (2)

1999 (1)

1991 (1)

1989 (1)

1988 (1)

M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980).
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Brinkman, W. F.

A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980).
[CrossRef]

Cappellini, G.

Chen, A. Y. H.

Chen, J. S. Y.

Coen, S.

de Matos, C. J. S.

Deng, Y.

Devgan, P.

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

Fiorentino, M.

Haelterman, M.

Hansen, K. P.

Hansryd, J.

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Harvey, J. D.

Hasegawa, A.

A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980).
[CrossRef]

Haus, H. A.

K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989).
[CrossRef]

M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
[CrossRef] [PubMed]

Hedekvist, P. O.

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Ho, M. C.

Kazovsky, L. G.

Kishi, M.

S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
[CrossRef]

Knight, J. C.

Knox, W. H.

Kumar, P.

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002)
[CrossRef] [PubMed]

D. K.�Serkland and P.�Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett.�24, 92-94 (1999).
[CrossRef]

Lasri, J.

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

Leonhardt, R.

Li, J.

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Lin, C.

Lin, Q.

Lu, F.

Marhic, M. E.

Millot, G.

S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003).
[CrossRef]

Murdoch, S. G.

Nakazawa, M.

K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989).
[CrossRef]

M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
[CrossRef] [PubMed]

Pearson, A. D.

Pitois, S.

S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003).
[CrossRef]

Reed, W. A.

Russell, P. St. J.

Saito, S.

S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
[CrossRef]

Serkland, D. K.

Shang, H. T.

Sharping, J. E.

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002)
[CrossRef] [PubMed]

Suzuki, K.

K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989).
[CrossRef]

M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
[CrossRef] [PubMed]

Tang, R.

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

Trillo, S.

Tsai, T. E.

Tsuchiya, M.

S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
[CrossRef]

Wadsworth, W. J.

Westlund, M.

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Windeler, R. S.

Wong, G. K. L.

Wong, K. K. Y.

Electron. Lett. (1)

S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. E.�Marhic, K. K. Y.�Wong, and L. G.�Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron.�10, 1133-1141 (2004).

J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

IEEE Photon. Technol. Lett. (1)

J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (11)

C.�Lin, W. A.�Reed, A. D.�Pearson, and H. T.�Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett.�6, 493-495 (1981).
[CrossRef]

C. J. S.�de Matos, J. R.�Taylor, and K. P.�Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett.�29, 983-985 (2004).

Y.�Deng, Q.�Lin, F.�Lu, G. P.�Agrawal, and W. H.�Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett.�30, 1234-1236 (2005).
[CrossRef]

M. E.�Marhic, K. K. Y.�Wong, M. C.�Ho, and L. G.�Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett.�26, 620-622 (2001).

J. D.�Harvey, R.�Leonhardt, S.�Coen, G. K. L.�Wong, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett.�28, 2225-2227 (2003).
[CrossRef]

A. Y. H.�Chen, G. K. L.�Wong, S. G.�Murdoch, R.�Leonhardt, J. D.�Harvey, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett.�30, 762-764 (2005).

J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002)
[CrossRef] [PubMed]

K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989).
[CrossRef]

D. K.�Serkland and P.�Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett.�24, 92-94 (1999).
[CrossRef]

S.�Coen and M.�Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett.�26, 39-41 (2001).
[CrossRef] [PubMed]

M. E.�Marhic, K. K. Y.�Wong, L. G.�Kazovsky, and T. E.�Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett.�27, 1439-1441 (2002).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A two-dimensional metamaterial with thick liquid crystal superstrate and substrate layers having a reconfigurable index of refraction.

Fig. 2.
Fig. 2.

Effective parameters of the reconfigurable near-IR metamaterial for different values of εLC : (a) n′, (b) n″, (c) ε, and (d) μ with respect to wavelength.

Fig. 3.
Fig. 3.

The effective index of refraction n with respect to εLC at two different wavelengths λ = 1.4 and 1.45 μm.

Fig. 4.
Fig. 4.

The effective index of refraction n for a mid-infrared reconfigurable metamaterial design: (a) n with respect to wavelength for different values of εLC , (b) n with respect to εLC at two different wavelengths λ = 4.5 and 4.8 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε LC = ε ε ε cos 2 θ + ε sin 2 θ ,

Metrics