Abstract

Near-infrared metamaterials that possess a reconfigurable index of refraction from negative through zero to positive values are presented. Reconfigurability is achieved by cladding thin layers of liquid crystal both as a superstrate and a substrate on an established negative-index metamaterial, and adjusting the permittivity of the liquid crystal. Numerical results show that the index of refraction for the proposed structure can be changed over the range from -1 to +1.8 by tuning the liquid crystal permittivity from 2 to 6 at a wavelength of 1.4 μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
    [Crossref] [PubMed]
  3. I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
    [Crossref]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30,3356–3358 (2005).
    [Crossref]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
    [Crossref] [PubMed]
  6. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
    [Crossref] [PubMed]
  7. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002).
    [Crossref]
  8. I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006).
    [Crossref] [PubMed]
  9. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006).
    [Crossref] [PubMed]
  10. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, NY, 1995).
  11. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998).
    [Crossref]
  12. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
    [Crossref]
  13. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23,423–433 (2006).
    [Crossref]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972).
    [Crossref]
  15. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).
  16. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37,5271–5283 (1998).
    [Crossref]

2006 (4)

2005 (3)

2002 (2)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[Crossref] [PubMed]

1998 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Bossard, J. A.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

Cai, W.

Chatterjee, A.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998).
[Crossref]

Chen, K.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972).
[Crossref]

Diaz, A.

I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006).
[Crossref] [PubMed]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Djurišic, A. B.

Drachev, V. P.

Elazar, J. M.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

Graugnard, E.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Jain, S.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972).
[Crossref]

Kempel, L. C.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998).
[Crossref]

Khoo, I. C.

I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006).
[Crossref] [PubMed]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, NY, 1995).

Kildishev, A. V.

King, J. S.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Klar, T. A.

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).

Li, L.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Liang, X.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).

Majewski, M. L.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002).
[Crossref]

Rakic, A. D.

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[Crossref] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

Summers, C. J.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Volakis, J. L.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998).
[Crossref]

Werner, D. H.

I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006).
[Crossref] [PubMed]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Williams, Y.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Yuan, H.-K.

Zhang, S.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Nonlinear Opt. Phys. (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005).
[Crossref] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Other (3)

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, NY, 1995).

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998).
[Crossref]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A two-dimensional metamaterial with thick liquid crystal superstrate and substrate layers having a reconfigurable index of refraction.

Fig. 2.
Fig. 2.

Effective parameters of the reconfigurable near-IR metamaterial for different values of εLC : (a) n′, (b) n″, (c) ε, and (d) μ with respect to wavelength.

Fig. 3.
Fig. 3.

The effective index of refraction n with respect to εLC at two different wavelengths λ = 1.4 and 1.45 μm.

Fig. 4.
Fig. 4.

The effective index of refraction n for a mid-infrared reconfigurable metamaterial design: (a) n with respect to wavelength for different values of εLC , (b) n with respect to εLC at two different wavelengths λ = 4.5 and 4.8 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε LC = ε ε ε cos 2 θ + ε sin 2 θ ,

Metrics