Abstract

We present a coherent multi-frequency source generated from a mode-locked femto-second laser. The key concept for the coherent multi-frequency source generation is using the mode-locked femto-second laser as many continuous wave (CW) optical sources. We simultaneously selected and amplified the desired modes of the optical frequency comb using femtosecond laser injection-locking (FSLIL). Using two coherent sources generated by the mode-locked femto-second laser, we have demonstrated a coherent spectroscopy in a A-type system of the Cs D2 line. The proposed coherent multi-frequency source generation technique will be a useful technique for optical frequency standards based on multi-photon schemes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  2. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
    [CrossRef] [PubMed]
  3. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  5. S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
    [CrossRef]
  6. M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
    [CrossRef] [PubMed]
  7. T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
    [CrossRef] [PubMed]
  8. R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
    [PubMed]
  9. T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
    [CrossRef]
  10. A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
    [CrossRef] [PubMed]
  11. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
    [CrossRef] [PubMed]
  12. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
    [CrossRef]
  13. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
    [CrossRef] [PubMed]

2006 (5)

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

2005 (3)

M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
[CrossRef] [PubMed]

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

2003 (1)

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

2000 (2)

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1999 (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Arimondo, E.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

Barber, Z. W.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Blatt, S.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

Boyd, M.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

Cramer, C.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Cundiff, S.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Diddams, S.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Fortson, E. N.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Greene, C.

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

Hall, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Higashi, R.

M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
[CrossRef] [PubMed]

Hollberg, L.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Hong, F.

M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
[CrossRef] [PubMed]

Hong, T.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Hoyt, C. W.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Ido, T.

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

Jones, D.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kim, E. B.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

Kwon, T. Y.

Ludlow, A.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

Moon, H. S.

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Nagourney, W.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Niering, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Oates, C. W.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Park, C. Y.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

Park, S. E.

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Park, Y.-H.

Ranka, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Reichert, J.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Santra, R.

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

Stentz, A.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Taichenachev, A. V.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Takamoto, M.

M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Weitz, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Windeler, R.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Ye, J.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Yee, D. S.

Yoon, T. H.

Yudin, V. I.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Zanon-Willette, T.

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Nature (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

M. Takamoto, F. Hong, R. Higashi1, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (7)

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, "Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms," Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

R. Santra, E. Arimondo, T. Ido, C. Greene, and J. Ye, "High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr," Phys. Rev. Lett. 94, 173002 (2005).
[PubMed]

T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye, "Cancellation of Stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques," Phys. Rev. Lett. 97, 233001 (2006).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, "Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks," Phys. Rev. Lett. 96, 083001 (2006).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev and V. I. Yudin, "Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice," Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, "Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003).
[CrossRef]

Science (1)

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Multi-photon schemes for the doubly forbidden intercombination transition in the even isotopes of alkaline earth-like atoms; (a) three-level system [8], and (b) four-level system [7].

Fig. 2.
Fig. 2.

Experimental setup for the generation of the coherent multi-frequency source and the coherent spectroscopy in a Cs D2 line (DBR: distributed Bragg reflector diode laser, F: 852 nm interference filter, FR: Faraday rotator, AOM: acoustic optic modulator, M: mirror, LP: linear polarizer, AP: aperture, PBS: polarizing beam splitter, BS: beam splitter, PD: Si photodiode).

Fig. 3.
Fig. 3.

The energy level diagram of the 6S1/2-6P3/2 transition of a Cs atom: CPT is accomplished using the two laser fields applied in a Λ-type scheme (Ωb: probe laser and ΩC: coupling laser).

Fig. 4.
Fig. 4.

Saturated absorption spectrum (SAS) of a Cs D2 line optically injection-locked by OFC; (a) injection-locking near the F=4 → F’=3 transition, and (b) injection-locking in the F=4 → F’=4 transition.

Fig. 5.
Fig. 5.

The Λ-type CPT spectrum of the 6S1/2-6P3/2 transition of Cs. The linewidth of the CPT spectrum is 1.4 kHz and the contrast is approximately 1%.

Metrics