Abstract

Efficient operation of semiconductor disk lasers is demonstrated using uncooled and inexpensive 905nm high-power pulsed semiconductor pump lasers. Laser emission, with a peak power of 1.7W, is obtained from a 2.3μm semiconductor disk laser. This is seven times the power achieved under continuous pumping. Analysis of the time-dependent spectral characteristics of the laser demonstrate that significant device heating occurs over the 100-200ns duration of the pumping pulse - finite element modelling of the thermal processes is undertaken in support of these data. Spectral narrowing to below 0.8nm is obtained by using an intra-cavity birefringent filter.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Intracavity diamond heatspreaders in lasers: the effects of birefringence

Francesco van Loon, Alan J. Kemp, Alexander J. Maclean, Stephane Calvez, John-Mark Hopkins, Jennifer E. Hastie, Martin D. Dawson, and David Burns
Opt. Express 14(20) 9250-9260 (2006)

Microlensed microchip VECSEL

Nicolas Laurand, C. L. Lee, E. Gu, J.E. Hastie, Stephane Calvez, and Martin D. Dawson
Opt. Express 15(15) 9341-9346 (2007)

Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders

A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns
J. Opt. Soc. Am. B 26(12) 2228-2236 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
    [Crossref]
  2. A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
    [Crossref]
  3. J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
    [Crossref]
  4. J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
    [Crossref]
  5. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
    [Crossref]
  6. J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13,77–81 (2005)
    [Crossref] [PubMed]
  7. J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
    [Crossref]
  8. N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
    [Crossref]
  9. J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)
  10. S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
    [Crossref]
  11. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
    [Crossref]
  12. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77,651–653 (2000)
    [Crossref]
  13. F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
    [Crossref] [PubMed]
  14. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
    [Crossref]
  15. A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
    [Crossref] [PubMed]
  16. Li Fan, Mahmoud Fallahi, Jörg Hader, Aramais R. Zakharian, Jerome V. Moloney, James T. Murray, Robert Bedford, Wolfgang Stolz, and Stephan W. Koch, Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett., 31, Issue 24,3612–3614 (2006)
    [Crossref] [PubMed]
  17. Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
    [Crossref] [PubMed]
  18. K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
    [Crossref] [PubMed]
  19. for full detail see www.osram-os.com
  20. for full detail see www.perkinelmer.com
  21. Dr Heller Elektronik KG, Germany
  22. K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
    [Crossref]
  23. Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
    [Crossref]
  24. T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
    [Crossref]
  25. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. App. Phys., 66,6030, 1989
    [Crossref]
  26. “Electronic Archive: New Semiconductor Materials, Characteristics and Properties,” Ioffe Physico-Technical Institute, 2003
  27. M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
    [Crossref]
  28. Element 6, “Diamond Types,” (Element 6 Ltd., 2006)

2006 (8)

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Li Fan, Mahmoud Fallahi, Jörg Hader, Aramais R. Zakharian, Jerome V. Moloney, James T. Murray, Robert Bedford, Wolfgang Stolz, and Stephan W. Koch, Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett., 31, Issue 24,3612–3614 (2006)
[Crossref] [PubMed]

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

2005 (4)

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13,77–81 (2005)
[Crossref] [PubMed]

2004 (3)

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

2003 (1)

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

2002 (1)

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

2000 (3)

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77,651–653 (2000)
[Crossref]

1999 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

1989 (1)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. App. Phys., 66,6030, 1989
[Crossref]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. App. Phys., 66,6030, 1989
[Crossref]

Amsden, C.A.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Bedford, Robert

Bengtsson, Jorgen

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

Beyertt, S.-S.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Borca-Tasciuc, T.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Brauch, U.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Burns, D.

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Butterworth, S. D.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Calvez, S.

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13,77–81 (2005)
[Crossref] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Caprara, A. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Carey, G.P.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

Cerutti, L.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

Charles, J.P.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Chen, G.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Chen, Y.F.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Chilla, J. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Cho, S. H.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Cohen, G.M.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Dawson, M.

Dawson, M. D.

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Dhanjal, S.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Doan, V.V.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Fallahi, Mahmoud

Fan, Li

Fischer, M.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Forchel, A.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Garnache, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

Genty, F.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

Gerster, Eckart

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

Giesen, A.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Guina, M.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Ha, W.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

Hader, Jörg

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

Haring, R.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Härkönen, A.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Härkönen, Antti

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

Hastie, J.

Hastie, J. E.

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

Heller, Dr

Dr Heller Elektronik KG, Germany

Holden, T.M.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Hoogland, S.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Hopkins, J. M.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Hopkins, J. -M.

Hopkins, J.-M.

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Huang, K.F.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Huang, S.C.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Hümmer, M.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Jeon, C. W.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Jouhti, T.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Kahn, M.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Keller, U.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Kemp, A. J.

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

Kim, J. Y.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Kim, K. S.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Kim, T.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Koch, Stephan W.

Koehler, K.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Kohler, K.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Kronik, L.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Kuebler, T.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

Laakso, A.

Larsson, Anders

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

Lee, D.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Lee, H.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Lee, J. H.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Lee, S. M.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Lehnhardt, T.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Leinonen, T.

Lewis, A.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Li, A.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Liau, Z. L.

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77,651–653 (2000)
[Crossref]

Liebman, M.K.

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Lim, S. J.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Lindberg, Hans

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

Liu, S.C.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Lyytikäinen, J.

Maclean, A. J.

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. -M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14,9250–9260 (2006)
[Crossref] [PubMed]

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Manfra, M. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Manz, C.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Martinelli, R. U.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

McInerney, J.G.

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Meyer, J. R.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Moloney, Jerome V.

Mooradian, A.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

Moran, B.D.

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Morier-Genoud, F.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Müller, M.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Muñoz, M.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Murray, James T.

Nosho, B. Z.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Okhotnikov, O.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Okhotnikov, Oleg G.

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

Ouvrard, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

Park, Y. J.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Paschotta, R.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Pessa, M.

J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13,77–81 (2005)
[Crossref] [PubMed]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Pollak, F.H.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Rattunde, M.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Reed, M. K.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Ritter, D.

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Ritzenthaler, C.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Roberts, J.S.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Romanini, D.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

Rößner, K.

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Saarinen, Esa J.

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

Schulz, N.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Shchegrov, A.V.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Smith, S. A.

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Song, D. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Spinelli, L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

Stolz, Wolfgang

Strassner, Martin

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

Strzelecka, E.M.

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Su, K.W.

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Sun, H. D.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

Suomalainen, Soile

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

Tropper, A.C.

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

Turner, G. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Umbrasas, A.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

van Loon, F.

Vurgaftman, I.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Wagner, J.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

Watson, J.P.

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

Whitman, L. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Wild, C.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

Yang, M.-J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

Yoo, J. R.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Zakharian, Aramais R.

Zeitschel, A.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Appl. Phys. Lett. (2)

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88,091107 (2006)
[Crossref]

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77,651–653 (2000)
[Crossref]

Electron. Lett. (1)

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40,30–31 (2004)
[Crossref]

IEEE J. Quantum Electron. (1)

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41,148–155 (2005)
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5,561–573 (1999)
[Crossref]

Hans Lindberg, Martin Strassner, Eckart Gerster, Jorgen Bengtsson, and Anders Larsson, “Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers,” IEEE J. Sel. Top. Quantum Electron., 11,1126, (2005)
[Crossref]

IEEE Photon. Technol. Lett (1)

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3 μm,” IEEE Photon. Technol. Lett, 17,2020–2022, (2005)
[Crossref]

IEEE Photon. Technol. Lett. (2)

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, “Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18,1070–1072 (2006), and J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, and K. Kohler, “Barrier- and in-well pumped GaSb-based 2.3 μm VECSELs,” accepted for publication in phys. stat. sol. (c)
[Crossref]

S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12,1135–1137 (2000).
[Crossref]

J. App. Phy.s (1)

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. App. Phy.s, 92,4994, (2002)
[Crossref]

J. App. Phys. (2)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. App. Phys., 66,6030, 1989
[Crossref]

M. Muñoz, T.M. Holden, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik , and G.M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modelling,” J. App. Phys., 87,1780, (2000)
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt.Lett (1)

K.W. Su, S.C. Huang, A. Li, S.C. Liu, Y.F. Chen, and K.F. Huang, “High-peak-power AlGaInAs quantum-well 1.3μm laser pumped by a diode-pumped actively Q-switched solid-state laser,” Opt.Lett, 31, No.13,2009–2011 (2006)
[Crossref] [PubMed]

Optics Express (2)

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, 14, Issue 14,6479–6484, (2006)
[Crossref] [PubMed]

Esa J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov, Power scalable semiconductor disk laser using multiple gain cavity,” Optics Express, 14, Issue 26,12868–12871 (2006)
[Crossref] [PubMed]

Physica Status Solidi (c) (1)

J.-M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson., “High-power vertical external-cavity surface-emitting lasers,” Physica Status Solidi (c), 3,380, (2006).
[Crossref]

Proc. SPIE (3)

A.V. Shchegrov, D. Lee, J.P. Watson, A. Umbrasas, E.M. Strzelecka, M.K. Liebman, C.A. Amsden, A. Lewis, V.V. Doan, B.D. Moran, J.G. McInerney, and A. Mooradian, “490-nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers,” Proc. SPIE, 4994,197 (2003).
[Crossref]

J.P. Watson, A.V. Shchegrov, A. Umbrasas, D. Lee, C.A. Amsden, W. Ha, G.P. Carey, V.V. Doan, A. Lewis, and A. Mooradian, “Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers,” Proc. SPIE, 5364,116 (2004)
[Crossref]

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J.P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332,143–150 (2004)
[Crossref]

Other (6)

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, “Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL,” presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006)

for full detail see www.osram-os.com

for full detail see www.perkinelmer.com

Dr Heller Elektronik KG, Germany

“Electronic Archive: New Semiconductor Materials, Characteristics and Properties,” Ioffe Physico-Technical Institute, 2003

Element 6, “Diamond Types,” (Element 6 Ltd., 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig.1.
Fig.1.

Output characteristics of OSRAM SPL PL90_3 pulsed laser as a function of voltage applied to the avalanche transistor driver circuit

Fig. 2.
Fig. 2.

Compact high-power pulsed pump laser (OSRAM SPL PL90_3) and avalanche transistor driver (Dr. Heller Elektronik [21]) configuration.

Fig. 3.
Fig. 3.

Optically pumped semiconductor disk laser configuration – the GaSb-based disk laser emits at 2.3μm

Fig. 4.
Fig. 4.

Pump (top trace) and output laser (bottom trace) waveforms - source voltage of 20V; 100μm core fibre coupling. Note: an intensity offset between the two traces has been introduced for clarity.

Fig. 5.
Fig. 5.

Power transfer characteristic of the 2.3μm semiconductor disk laser for both room temperature continuous wave and pulsed pumping. The power axis refers to the cw power and the on-time (or peak power) for the cw and pulsed pumped cases respectively.

Fig. 6.
Fig. 6.

Temporal dependence of the 11 ‘diamond etalon’ mode groups of the semiconductor disk laser. The source voltage applied to the pulsing circuit was 25V – incident pump power ∼31W

Fig. 7.
Fig. 7.

Instantaneous oscillation spectrum of the pulsed pumped semiconductor disk laser at various times throughout the output laser pulse. The spectrum shifts to longer wavelengths with time - i.e. the temperature of the device increases.

Fig. 8.
Fig. 8.

Spectral shift of the instantaneous oscillation spectrum versus time after turn on of the output pulse. The temperature shift implied by these data is also plotted – 0.33nm/K was used for the disk laser resonance shift with temperature.

Fig. 9.
Fig. 9.

Schematic of the reflectivity function of the semiconductor disk laser showing the position of the micro-cavity resonance (within which the laser oscillation is constrained), and the gain spectrum of the quantum wells. These two functions shift to longer wavelengths as temperature increases but at different rates (Y>X). When the two functions coincide, the device efficiency is maximised - further temperature increases lead to reduced performance.

Fig. 10.
Fig. 10.

Time-dependent heating of a GaSb-based semiconductor disk laser predicted by finite element analysis and compared to the experimental data. A pump pulse of 180ns with an on-time incident power of 30W, and a pump spot radius of 45μm are assumed. A weighted average of the temperature is taken to account for the spatial variation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T a v e = T ( r , z ) I p ( r ) d V I p ( r ) d V

Metrics