Abstract

We experimentally demonstrate a micron-size electro-optic modulator using a high-index-contrast silicon Fabry-Pérot resonator cavity. This compact device consists of a 1-D cavity formed within a single mode silicon channel waveguide and an embedded p-i-n junction on a silicon-on-insulator platform. The entire device is 6.0 microns in length. We demonstrate modulation depths as large as 5.87 dB at speeds of 250 Mbps limited only by fabrication imperfections, with optimized theoretical speeds of several Gbps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
    [CrossRef]
  2. A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13μm SOI CMOS," presented at 2006 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.
    [PubMed]
  3. T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
    [CrossRef]
  4. R. D. Kekatpure, R. S. Shenoy, and M. L. Brongersma, "Design of a silicon-based field-effect electro-optic modulator with enhanced light-charge interaction," Opt. Lett. 30, 2149-2151 (2006).
    [CrossRef]
  5. C. E. Png, J. Sun, and E. P. Li, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," presented at 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, Singapore, 2006.
    [PubMed]
  6. R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ =1.3 and 1.6μm," IEEE J. Quantum Electron. 22, 6, 873-879 (1986).
    [CrossRef]
  7. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  9. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701-2703 (2006).
    [CrossRef] [PubMed]
  10. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
    [CrossRef]
  11. A. S. Jugessur, P. Pottier, and R. M. de La Rue, "Engineering the filter response of photonic crystal microcavity filters," Opt. Express 12, 1304-1312 (2004).
    [CrossRef] [PubMed]
  12. P. Lalanne, S. Mias, and J. P. Hugonin, "Two physical mechanisms for the boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004).
    [CrossRef] [PubMed]
  13. P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
    [CrossRef]
  14. C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
    [CrossRef]
  15. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
    [CrossRef]
  16. B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
    [CrossRef]
  17. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper fro compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  18. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
    [CrossRef]
  19. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  20. S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
    [CrossRef]
  21. M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]

2006

R. D. Kekatpure, R. S. Shenoy, and M. L. Brongersma, "Design of a silicon-based field-effect electro-optic modulator with enhanced light-charge interaction," Opt. Lett. 30, 2149-2151 (2006).
[CrossRef]

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701-2703 (2006).
[CrossRef] [PubMed]

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

2005

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

A. S. Jugessur, P. Pottier, and R. M. de La Rue, "Engineering the filter response of photonic crystal microcavity filters," Opt. Express 12, 1304-1312 (2004).
[CrossRef] [PubMed]

P. Lalanne, S. Mias, and J. P. Hugonin, "Two physical mechanisms for the boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004).
[CrossRef] [PubMed]

2003

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper fro compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

1986

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ =1.3 and 1.6μm," IEEE J. Quantum Electron. 22, 6, 873-879 (1986).
[CrossRef]

Almedia, V. R.

S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper fro compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bergman, K.

Bond, A. E.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Boyraz, O.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

Brongersma, M. L.

Choi, S. J.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Dapkus, P. D.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

de La Rue, R. M.

Dimitropoulos, D.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

P. Lalanne, S. Mias, and J. P. Hugonin, "Two physical mechanisms for the boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Jalali, B.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Jugessur, A. S.

Kekatpure, R. D.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Lalanne, P.

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

P. Lalanne, S. Mias, and J. P. Hugonin, "Two physical mechanisms for the boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004).
[CrossRef] [PubMed]

Lee, B. G.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Lipson, M.

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701-2703 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper fro compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
[CrossRef]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ =1.3 and 1.6μm," IEEE J. Quantum Electron. 22, 6, 873-879 (1986).
[CrossRef]

Mias, S.

Nawrocka, M. S.

M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Panepucci, R.

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper fro compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Pottier, P.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

Raghunathan, V.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Sadagopan, T.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

Shenoy, R. S.

Small, B. A.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ =1.3 and 1.6μm," IEEE J. Quantum Electron. 22, 6, 873-879 (1986).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Wang, T. L.

M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Xu, Q.

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Opt. Lett. 31, 2701-2703 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Velha, J. C. Rodier, P. Lalanne, and J. P. Hugonin, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006).
[CrossRef]

M. S. Nawrocka, T. L. Wang, and R. R. Panepucci, " Tunable silicon microring resonator with wide spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

IEEE J. of Lightwave Technol.

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," IEEE J. of Lightwave Technol. 21, 1089-1098 (2003).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer size waveguide devices," IEEE J. of Lightwave Technol. 21, 2332-2339 (2003).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ =1.3 and 1.6μm," IEEE J. Quantum Electron. 22, 6, 873-879 (1986).
[CrossRef]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 407, 615-619 (2004).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, "Scaling laws of nonlinear silicon nanophotonics," Proc. SPIE 5730, 41-51 (2005).
[CrossRef]

S. F. Preble, V. R. Almedia, and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

Other

C. E. Png, J. Sun, and E. P. Li, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," presented at 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, Singapore, 2006.
[PubMed]

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13μm SOI CMOS," presented at 2006 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of the F-P modulator. The effective refractive index in the cavity is changed by carrier injection and extraction when a potential is applied across the p-i-n. (b) Optical image of a fabricated device with a cavity length of 2.51 microns on a SOI substrate, showing the metal contacts and vias on either side. The contacts are much larger than the actual doped regions. The entire device is shorter than 6 microns in length.

Fig. 2.
Fig. 2.

Measured transmission spectrum of the micro-cavity for an applied voltage of 0.8 V (below threshold) and 5.6 V (above threshold).

Fig. 3.
Fig. 3.

Transmission as a function of applied DC bias for a wavelength of 1568.54 nm.

Fig. 4.
Fig. 4.

Optical modulation due to an applied electrical signal at 250 Mbps.

Fig. 5.
Fig. 5.

Optical extinction ratio as a function of the speed of the applied AC signal.

Fig. 6.
Fig. 6.

(a) Simulated 1 GBPS operation for the present device with (Q=780, voltage swing of 2.0 V and DC bias of 0.3 V. (b) Simulated rise and fall times for electrically ideal p-i-n structures with different Q’s.

Fig. 7.
Fig. 7.

Absolute shift in the peak resonance as a function of the DC power consumed in the device for a ring resonator (circumference = 31.4 μm) and a F-P cavity (length of 2.51 μm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n cavity = [ 8.8 × 10 22 ( Δ N e ) + 8.5 × 10 18 ( Δ N h ) 0.8 ]
Δ n cavity P AL
MD Δ λ resonance δ λ FWHM Q P AL
FOM = MD × Bandwidth Power 1 V eff

Metrics