Abstract

We report a broad-band continuum light source with high power, low noise and a smooth spectrum centered at 1.15 μm for ultrahigh-resolution optical coherence tomography (OCT). The continuum is generated by self-phase modulation using a compact 1.059 μm femtosecond laser pumping a novel photonic crystal fiber, which has a convex dispersion profile with no zero dispersion wavelengths. The emission spectrum is red-shifted from the pump wavelength, ranges from 800 to 1300 nm and results in a measured axial resolution of ~2.8 μm in air. We demonstrate ultrahigh-resolution OCT imaging of biological tissue using this light source. The results suggest PCF with this type of dispersion profile is advantageous for generating SC as a light source for ultrahigh-resolution OCT.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47 (2004).
    [CrossRef] [PubMed]
  2. A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
    [CrossRef] [PubMed]
  3. T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1860
    [CrossRef] [PubMed]
  4. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  5. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2- m m axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
    [CrossRef] [PubMed]
  6. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Büting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11,3290-3297 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
    [CrossRef] [PubMed]
  7. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
    [CrossRef] [PubMed]
  8. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12,3532-3542 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3532
    [CrossRef] [PubMed]
  9. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30,1171-1173 (2005).
    [CrossRef] [PubMed]
  10. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14,1596-1603 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1596
    [CrossRef] [PubMed]
  11. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
    [CrossRef] [PubMed]
  12. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26,608-610 (2001).
    [CrossRef]
  13. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10,1083-1098 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083
    [PubMed]
  14. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
    [CrossRef] [PubMed]
  15. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
    [CrossRef] [PubMed]
  16. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, "Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography," J. Opt. Soc. Am. A 22,1492-1499 (2005).
    [CrossRef]
  17. H. Wang and A. M. Rollins, "Optimization of dual band continuum light source for ultrahigh resolution optical coherence tomography," App. Opt. (in press).
  18. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14,1145-1160 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145
    [CrossRef]
  19. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, "Diode-pumped Yb:Sr_3 Y(BO_3) _3 femtosecond laser," Opt. Lett. 27, 197-199 (2002)
    [CrossRef]
  20. H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003)
    [CrossRef] [PubMed]

2006

2005

2004

P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12,3532-3542 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3532
[CrossRef] [PubMed]

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47 (2004).
[CrossRef] [PubMed]

A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
[CrossRef] [PubMed]

2003

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003)
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2- m m axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Büting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11,3290-3297 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
[CrossRef] [PubMed]

2002

2001

1996

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Aguirre, A.

Aguirre, A. D.

Aka, G.

Apolonski, A.

Balembois, F.

Bilinsky, I. P.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Birks, T.

Birks, T. A.

Bizheva, K.

Bouma, B. E.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Bourquin, S.

Breuer, E.

Broeng, J.

Büting, U.

Chen, Y.

Chen, Z.

Chénais, S.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
[CrossRef] [PubMed]

Dickinson, M. R.

A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Drexler, W.

Druon, F.

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Fercher, A. F.

Fujimoto, J.

Fujimoto, J. G.

Gaumé, R.

Genty, G.

Georges, P.

Ghanta, R. K.

Golubovic, B.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Goodnow, J.

Hartl, I.

Hermann, B.

Herz, P.

Hillman, T.

Hoelzenbein, T.

Holzwarth, R.

Hsiung, P.

Huang, Y.-C.

Humbert, G.

Ilday, F. Ö.

Jiang, Y.

Kaivola, M.

King, T. A.

A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
[CrossRef] [PubMed]

Knight, J.

Knight, J. C.

Ko, T. H.

Kopf, D.

Koski, A.

Lederer, M.

Lehtonen, M.

Leon-Saval, S.

Li, X. D.

Lim, H.

Ludvigsen, H.

Mashimo, H.

Mei, M.

Mohr, S.

Nelson, J. S.

Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, "Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography," J. Opt. Soc. Am. A 22,1492-1499 (2005).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
[CrossRef] [PubMed]

Newbury, N. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Nishizawa, N.

Pehamberger, H.

Petersen, C.

Povazay, B.

Ranka, J. K.

Raybaut, P.

Rollins, A. M.

H. Wang and A. M. Rollins, "Optimization of dual band continuum light source for ultrahigh resolution optical coherence tomography," App. Opt. (in press).

Russell, P. S. J.

Sainter, A. W.

A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
[CrossRef] [PubMed]

Sampson, D.

Sattmann, H.

Scherzer, E.

Schmitt, J.

Seitz, W.

Stifter, D.

Tearney, G. J.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Tomov, I.

Unterhuber, A.

Vetterlein, M.

Viana, B.

Wacheck, V.

Wadsworth, W.

Wadsworth, W. J.

Wang, H.

H. Wang and A. M. Rollins, "Optimization of dual band continuum light source for ultrahigh resolution optical coherence tomography," App. Opt. (in press).

Wang, Y.

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Wiesauer, K.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26,608-610 (2001).
[CrossRef]

Wise, F.

Wise, F. W.

Zhao, Y.

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
[CrossRef] [PubMed]

App. Opt.

H. Wang and A. M. Rollins, "Optimization of dual band continuum light source for ultrahigh resolution optical coherence tomography," App. Opt. (in press).

J. Biomed. Opt.

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47 (2004).
[CrossRef] [PubMed]

A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14,1145-1160 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145
[CrossRef]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14,1596-1603 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1596
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Büting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11,3290-3297 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
[CrossRef] [PubMed]

P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12,3532-3542 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3532
[CrossRef] [PubMed]

T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1860
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10,1083-1098 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083
[PubMed]

Opt. Lett.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003)
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2- m m axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30,1171-1173 (2005).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26,608-610 (2001).
[CrossRef]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, "Diode-pumped Yb:Sr_3 Y(BO_3) _3 femtosecond laser," Opt. Lett. 27, 197-199 (2002)
[CrossRef]

Opt.Lett.

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Dispersion profile and cross section SEM image (inset) of photonic crystal fiber (PCF) ; (b) experimental setup : BS, beam splitter; HWP, half-wave plate; RM, reference mirror; PD, photo detector; DC, dispersion compensation by two prism pairs (SF11 and Lakn22)

Fig. 2.
Fig. 2.

(a) Measured optical spectrum of PCF output (black solid line), input pump laser spectrum (dotted blue line) and inverse Fourier transform (IFT) of the measured point spread function shown in Fig. 3(a) (dashed red line); (b) Numerically simulated spectrum generated by using the same parameters as used in the experiment. Simulations including (green solid line) and not including (black dashed line) stimulated Raman scattering are shown.

Fig.3.
Fig.3.

(a) Linear scale pointed spread function (PSF) measured with free-sapce interferometer by use of an isolated reflection. (b) Logarithmic PSF measured after demodulation and scaled to reflect 60dB attenuation at the sample arm. Calculated noise floor (dashed line) and shot noise floor (dotted line) are also plotted for comparison.

Fig. 4.
Fig. 4.

Ultrahigh-resolution (~7 μm × 2.1μm, transverse ×longitudinal resolution) OCT imaging. (a) Human nail pad in vivo; (3 mm width × 2 mm height; 500×3600 pixels) S: stratum corneum; E: epidermis; N: Nail; BV: Blood Vessel; G, glass slide; (b) Porcine cornea in vitro with epithelium removed; (3 mm width × 2.2 mm height; 1200 × 3600 pixels) BL: Bowman’s layer; S: stroma; DM: Descement’s membrane.

Metrics