Abstract

A spherical artificial compound eye which is comprised of an imaging microlens array and a pinhole array in the focal plane serving as receptor matrix is fabricated. The arrays are patterned on separate spherical bulk lenses by means of a special modified laser lithography system which is capable of generating structures with low shape deviation on curved surfaces. Design considerations of the imaging system are presented as well as the characterization of the comprising elements on curved surfaces, with special attention to the homogeneity over the array. The assembled system is the first spherical compound eye able to capture images. It is evaluated by analyzing resolution and cross-talk between the single channels.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
    [Crossref]
  2. J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34,222–235 (1995).
    [Crossref]
  3. J. Duparré, P. Dannberg, P. Schreiber, A. Braüer, and A. Tünnermann, “Thin compound eye camera,” Appl. Opt. 44,2949–2956 (2005).
    [Crossref] [PubMed]
  4. S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
    [Crossref]
  5. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO) concept and experimental verification,” Appl. Opt. 40,1806–1813 (2001).
    [Crossref]
  6. N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
    [Crossref]
  7. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3,264–268 (1996).
    [Crossref]
  8. A. Brückner, J. Duparré, A. Braüer, and A. Tünnermann, “Artificial compound eye applying hyperacuity,” Opt. Express 14,12076–12084 (2006).
    [Crossref] [PubMed]
  9. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13,10539–10551 (2005).
    [Crossref] [PubMed]
  10. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312,557–561 (2006).
    [Crossref] [PubMed]
  11. F. Zhao, Y. Xie, S. He, S. Fu, and Z. Lu, “Single-step fabrication of microlens arrays with hybrid HfO2-SiO2 sol-gel glass on conventional lens surface,” Opt. Express 13,5846–5852 (2005).
    [Crossref] [PubMed]
  12. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15,1167–1174 (2007).
    [Crossref] [PubMed]
  13. M. F. Land and D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series (Oxford University Press, Oxford, 2002).
  14. K. Kirschfeld, “The Absolute Sensitivity of Lens and Compound Eyes,” Z. Naturforsch. 29,592–596 (1974).
  15. A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
    [Crossref]
  16. K. Kirschfeld, “The resolution of lens and compound eyes,” Neural Principles in Vision, pp.354–370 (1976).
  17. J. Duparré, P. Dannberg, P. Schreiber, A. Braüer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43,4303–4310 (2004).
    [Crossref] [PubMed]
  18. M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
    [Crossref]
  19. P. Dannberg, G. Mann, L. Wagner, and A. Braüer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro—Optics, S. H. Lee and E. G. Johnson, eds., Proc. SPIE4179 pp.137–145, (2000).
    [Crossref]
  20. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
    [Crossref]
  21. Z. D. Popovich, R. A. Sprague, and G. A. N. Conell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27,1281–1284 (1988).
    [Crossref]
  22. X. Feng and L. Sun, “Mathematical model of spin-coated photoresist on a spherical substrate,” Opt. Express 13,7070–7075 (2005).
    [Crossref] [PubMed]
  23. G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
    [Crossref]

2007 (1)

2006 (2)

2005 (4)

2004 (1)

2003 (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
[Crossref]

2001 (1)

2000 (1)

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

1997 (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

1996 (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3,264–268 (1996).
[Crossref]

1995 (1)

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34,222–235 (1995).
[Crossref]

1994 (2)

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
[Crossref]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

1992 (1)

N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
[Crossref]

1988 (1)

1977 (1)

A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
[Crossref]

1974 (1)

K. Kirschfeld, “The Absolute Sensitivity of Lens and Compound Eyes,” Z. Naturforsch. 29,592–596 (1974).

Blanes, C.

N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
[Crossref]

Braüer, A.

Brückner, A.

Cao, Y.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Conell, G. A. N.

Dannberg, P.

Duparré, J.

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
[Crossref]

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

Feng, X.

Franceschini, N.

N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
[Crossref]

Fu, S.

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

Halford, C. E.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34,222–235 (1995).
[Crossref]

Hamanaka, K.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3,264–268 (1996).
[Crossref]

Haselbeck, S.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

He, S.

Heeger, A.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

Ichioka, Y.

Ishida, J.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
[Crossref]

Ishida, K.

Jeong, K.-H.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312,557–561 (2006).
[Crossref] [PubMed]

Kim, J.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312,557–561 (2006).
[Crossref] [PubMed]

Kirschfeld, K.

K. Kirschfeld, “The Absolute Sensitivity of Lens and Compound Eyes,” Z. Naturforsch. 29,592–596 (1974).

K. Kirschfeld, “The resolution of lens and compound eyes,” Neural Principles in Vision, pp.354–370 (1976).

Kondou, N.

Koshi, H.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3,264–268 (1996).
[Crossref]

Kumagai, T.

Land, M. F.

M. F. Land and D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series (Oxford University Press, Oxford, 2002).

Laughlin, S. B.

A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
[Crossref]

Lee, L. P.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312,557–561 (2006).
[Crossref] [PubMed]

Lu, Z.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Nilsson, D.-E.

M. F. Land and D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series (Oxford University Press, Oxford, 2002).

Nussbaum, P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

Ogata, S.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
[Crossref]

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

Pichon, J. M.

N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
[Crossref]

Popovich, Z. D.

Radtke, D.

Reimann, A.

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

Sanders, J. S.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34,222–235 (1995).
[Crossref]

Sasano, T.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
[Crossref]

Schreiber, P.

Schütz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

Snyder, A. W.

A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
[Crossref]

Sprague, R. A.

Srdanov, G.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Stavenga, D. G.

A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
[Crossref]

Sun, L.

Tanida, J.

Tünnermann, A.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
[Crossref]

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

Wang, H.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Wang, J.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
[Crossref]

Wippermann, F.

Xie, Y.

Yamada, K.

Yu, G.

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Zeitner, U. D.

Zhao, F.

Appl. Opt. (4)

J. Comp. Physiol. A (1)

A. W. Snyder, D. G. Stavenga, and S. B. Laughlin, “Spatial Information Capacity of Compound Eyes,” J. Comp. Physiol. A 116,183–207 (1977).
[Crossref]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68,461–472 (2003).
[Crossref]

Opt. Eng. (3)

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34,222–235 (1995).
[Crossref]

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33,3649–3655 (1994).
[Crossref]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33,3556–3566 (1994).
[Crossref]

Opt. Express (5)

Opt. Rev. (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3,264–268 (1996).
[Crossref]

Phil. Trans. R. Soc. Lond. B (1)

N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Phil. Trans. R. Soc. Lond. B 337,283–294 (1992).
[Crossref]

Pure Appl. Opt. (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6,617–636 (1997).
[Crossref]

Science (1)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312,557–561 (2006).
[Crossref] [PubMed]

Synth. Metals (1)

G. Yu, G. Srdanov, J. Wang, H. Wang, Y. Cao, and A. Heeger, “Large area, full-color, digital image sensors made with semiconducting polymers,” Synth. Metals 111–112,133–137 (2000).
[Crossref]

Z. Naturforsch. (1)

K. Kirschfeld, “The Absolute Sensitivity of Lens and Compound Eyes,” Z. Naturforsch. 29,592–596 (1974).

Other (3)

M. F. Land and D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series (Oxford University Press, Oxford, 2002).

P. Dannberg, G. Mann, L. Wagner, and A. Braüer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro—Optics, S. H. Lee and E. G. Johnson, eds., Proc. SPIE4179 pp.137–145, (2000).
[Crossref]

K. Kirschfeld, “The resolution of lens and compound eyes,” Neural Principles in Vision, pp.354–370 (1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

a) Principle of the natural spherical compound eye and b) adapted solution for the artificial alternative.

Fig. 2.
Fig. 2.

a) Schematic view of the functional components of the modified laser lithography system capable of structuring curved surfaces. b) Fabrication flow of the microlens array (left, I-VII) and the pinhole array (right, Ib-VIb). The lower right corner of the flow (VII+VIb) shows a part of the final elements in their designed arrangement.

Fig. 3.
Fig. 3.

Photograph of fabricated array of 112×112 microlenses on concave lens surface (a), zoomed photo of a corner of the array (b), and microscopic image of the middle section (c) and a corner (d) of the array.

Fig. 4.
Fig. 4.

Profile scan data showing a small section of the array.

Fig. 5.
Fig. 5.

Resist thickness of a film spun onto a substrate with curvature of R = -40 mm.

Fig. 6.
Fig. 6.

Measured radius of curvature of the resist microlenses and replicated polymer microlenses over the array, showing desired uniformity over the array and good matching of the polymer with the resist lenses.

Fig. 7.
Fig. 7.

Single lens of the array, interferometrically measured (a) and profile measurement and spherical fit (b).

Fig. 8.
Fig. 8.

Shape deviation (PV and RMS) for the microlenses over the array.

Fig. 9.
Fig. 9.

Photograph of the experimental setup for active concentric alignment and optical characterization of spherical compound eye objective.

Fig. 10.
Fig. 10.

Images captured with the artificial spherical compound eye. a) Radial star pattern with 18 LPs on the circumference. Ghost images are clearly visible due to cross-talk between the channels. b),c),d) and e) Bar targets with 4, 8, 12 and 20 LPs/FOV respectively. f) ”Image Processing Lena”.

Fig. 11.
Fig. 11.

Response to a point source (Strongly magnified). a) Only one channel gives a strong response to a point source. b) Angular sensitivity function calculated from (a)).

Tables (1)

Tables Icon

Table 1. Summary of the most important parameters of the fabricated elements and the assembled spherical apposition eye.

Metrics