Abstract

We investigate the amplitude flatness of Rayleigh-assisted Brillouin-Raman comb laser in a linear cavity in which feedbacks are formed by high-reflectivity mirror. The optimization of Brillouin pump power and wavelength is very crucial in order to obtain a uniform power level between Stokes lines. The Brillouin pump must have a relatively large power and its wavelength must be located closer to the Raman peak gain region. The flat-amplitude bandwidth is also determined by the choice of Raman pump wavelengths. A flat-amplitude bandwidth of 30.7 nm from 1527.32 to 1558.02 nm is measured when Raman pump wavelengths are set to 1435 and 1450 nm. 357 uniform Brillouin Stokes lines with 0.086 nm spacing are generated across the wavelength range. The average signal-to-noise ratio of 17 dB is obtained for all the Brillouin Stokes lines.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  2. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
    [CrossRef]
  3. G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
    [CrossRef]
  4. B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
    [CrossRef]
  5. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
    [CrossRef]
  6. K. D. Park, H. Ryu, W. K. Lee, S. K. Kim, H. S. Moon, and H. S. Suh, "Threshold features of a Brillouin Stokes comb generated in a distributed fiber Raman amplifier," Opt. Lett. 28, 1311-1313 (2003).
    [CrossRef] [PubMed]
  7. A.K. Zamzuri, M.I. Md. Ali, A. Ahmad, R. Mohamad, and M.A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).
    [CrossRef] [PubMed]

2006 (1)

2003 (1)

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

2000 (1)

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

1996 (2)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Ahmad, A.

Ali, M.I. Md.

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Chang, J. S.

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Cowle, G. J.

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Kim, P.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Kim, S. K.

Lee, J. H.

Lee, W. K.

Mahdi, M.A.

Min, B.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Mohamad, R.

Moon, H. S.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Park, K. D.

Park, N.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Ryu, H.

Sato, K. -I.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Suh, H. S.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Zamzuri, A.K.

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. -I. Sato, E. Yamada, Y. Inoue, T, Shibata, M. Abe, T. Marioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

IEEE Photon. Technol. Lett (1)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett,  8,60-62 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

B. Min, P. Kim, and N. Park, "Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Multi-wavelength Brillouin-Raman fiber laser architecture in a linear cavity.

Fig. 2.
Fig. 2.

Measured output spectrum for 1534 nm BP wavelength at (a) 1.8 mW and (b) 10 mW power, the pump power is fixed to 300 mW.

Fig. 3.
Fig. 3.

The 3-dB bandwidth of the flattened Stokes lines at different pump powers, BP powers and wavelengths.

Fig. 4.
Fig. 4.

Output spectrum following a proper optimization of BP wavelength (1540 nm) and power (10 mW), the Raman pump power is fixed to 300 mW.

Fig. 5.
Fig. 5.

The optimized flat-amplitude spectrum (a) the whole spectrum, (b) magnified span at the low cut-off wavelengths and (c) magnified span at the high cut-off wavelengths.

Metrics