Abstract

A simple and cost-effective technique for generating a flat, square-shaped multi-wavelength optical comb with 42.6 GHz line spacing and over 0.5 THz of total bandwidth is presented. A detailed theoretical analysis is presented, showing that using two concatenated modulators driven with voltages of 3.5 Vπ are necessary to generate 11 comb lines with a flatness below 2dB. This performance is experimentally demonstrated using two cascaded Versawave 40 Gbit/s low drive voltage electro-optic polarisation modulators, where an 11 channel optical comb with a flatness of 1.9 dB and a side-mode-suppression ratio (SMSR) of 12.6 dB was obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.
  2. J. Capmany, D. Pastor, and B. Ortega, “Microwave signal processing using optics”, Tech Dig. OFC’05,Anaheim, 2005, pp.23–76.
  3. J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
    [Crossref]
  4. A.D. Ellis, F.C. Garcia-Gunning, and T. Healy, “Coherent WDM: The achievement of high spectral density through phase control within the transmitter”, Tech. Dig. OFC’06, Anaheim, 2006, OThR4.
  5. F.C. Garcia-Gunning and A.D. Ellis, “Generation of widely spaced optical frequency comb using an amplitude modulator pair,” in Proc. SPIE - Opto-Ireland Symposium 5825B-74, pp.469–474, (2005).
  6. S. Yamashita and G.J. Cowle, “Bidirectional 10-GHz Optical Comb Genereation with an Intracavity Fiber DFB Pumped Brillouin/Erbium Fiber Laser”, IEEE Phot. Tech. Lett., 10, pp.796–798, (1998).
    [Crossref]
  7. S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).
  8. T. Sakamoto, T. Kawanishi, and M Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation” Opt. Lett., 31, pp.811–813, (2006).
    [Crossref] [PubMed]
  9. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
    [Crossref]
  10. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
    [Crossref]
  11. J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)
  12. Q. Chen and X. Guan, “Spectrum analysis of phase amplitude modulation”, IEEE Transactions on Broadcasting, 36, pp.34–36, (1990).
    [Crossref]
  13. J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
    [Crossref]

2006 (2)

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

T. Sakamoto, T. Kawanishi, and M Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation” Opt. Lett., 31, pp.811–813, (2006).
[Crossref] [PubMed]

2005 (1)

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

2003 (1)

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

1998 (1)

S. Yamashita and G.J. Cowle, “Bidirectional 10-GHz Optical Comb Genereation with an Intracavity Fiber DFB Pumped Brillouin/Erbium Fiber Laser”, IEEE Phot. Tech. Lett., 10, pp.796–798, (1998).
[Crossref]

1992 (1)

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

1990 (1)

Q. Chen and X. Guan, “Spectrum analysis of phase amplitude modulation”, IEEE Transactions on Broadcasting, 36, pp.34–36, (1990).
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Azana, J.

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

Berger, N.K.

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

Bull, J.D.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Capmany, J.

J. Capmany, D. Pastor, and B. Ortega, “Microwave signal processing using optics”, Tech Dig. OFC’05,Anaheim, 2005, pp.23–76.

Chen, Q.

Q. Chen and X. Guan, “Spectrum analysis of phase amplitude modulation”, IEEE Transactions on Broadcasting, 36, pp.34–36, (1990).
[Crossref]

Cowle, G.J.

S. Yamashita and G.J. Cowle, “Bidirectional 10-GHz Optical Comb Genereation with an Intracavity Fiber DFB Pumped Brillouin/Erbium Fiber Laser”, IEEE Phot. Tech. Lett., 10, pp.796–798, (1998).
[Crossref]

Delfyett, P.J.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Ellis, A.D.

F.C. Garcia-Gunning and A.D. Ellis, “Generation of widely spaced optical frequency comb using an amplitude modulator pair,” in Proc. SPIE - Opto-Ireland Symposium 5825B-74, pp.469–474, (2005).

A.D. Ellis, F.C. Garcia-Gunning, and T. Healy, “Coherent WDM: The achievement of high spectral density through phase control within the transmitter”, Tech. Dig. OFC’06, Anaheim, 2006, OThR4.

Fairburn, M.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Fischer, B.

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

Fujiwara, M.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Garcia-Gunning, F.C.

A.D. Ellis, F.C. Garcia-Gunning, and T. Healy, “Coherent WDM: The achievement of high spectral density through phase control within the transmitter”, Tech. Dig. OFC’06, Anaheim, 2006, OThR4.

F.C. Garcia-Gunning and A.D. Ellis, “Generation of widely spaced optical frequency comb using an amplitude modulator pair,” in Proc. SPIE - Opto-Ireland Symposium 5825B-74, pp.469–474, (2005).

Gee, S.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Ghanipour, P.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Guan, X.

Q. Chen and X. Guan, “Spectrum analysis of phase amplitude modulation”, IEEE Transactions on Broadcasting, 36, pp.34–36, (1990).
[Crossref]

Hansen, K.P.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Healy, T.

A.D. Ellis, F.C. Garcia-Gunning, and T. Healy, “Coherent WDM: The achievement of high spectral density through phase control within the transmitter”, Tech. Dig. OFC’06, Anaheim, 2006, OThR4.

Heidemann, R.

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

Hofstetter, R.

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

Inoue, Y

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Iwatsuki, K.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Izutsu, M

Jaeger, N.A.F.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Judoawlkis, P.W.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Kani, J.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Kato, H.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Kawanishi, T.

Keller, U.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Krainer, L.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Lane, P.M.

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

Levit, B.

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Morioka, T

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

O’Reilly, J.J.

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Ortega, B.

J. Capmany, D. Pastor, and B. Ortega, “Microwave signal processing using optics”, Tech Dig. OFC’05,Anaheim, 2005, pp.23–76.

Ozharar, S.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Paschotta, R.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Pastor, D.

J. Capmany, D. Pastor, and B. Ortega, “Microwave signal processing using optics”, Tech Dig. OFC’05,Anaheim, 2005, pp.23–76.

Plant, J.J.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Quinlan, F.

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

Reid, A.

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Sakamoto, T.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Sato, K-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Smulakovsky, W.

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

Spuhler, G.J.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Suzuki, H.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Takachio, N.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Teshima, M.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

Yamashita, S.

S. Yamashita and G.J. Cowle, “Bidirectional 10-GHz Optical Comb Genereation with an Intracavity Fiber DFB Pumped Brillouin/Erbium Fiber Laser”, IEEE Phot. Tech. Lett., 10, pp.796–798, (1998).
[Crossref]

Zeller, S.C.

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

Electron. Lett. (2)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y Inoue, T. Shibata, M. Abe, T Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing” Electron. Lett., 36, pp.2089–2090. (2000),
[Crossref]

J.J. O’Reilly, P.M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals”, Electron. Lett., 28, pp.2309–, (1992)

IEEE J. Lightwave Tech. (1)

J. Azana, N.K. Berger, B. Levit, W. Smulakovsky, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers”, IEEE J. Lightwave Tech., 24,2663–2675 (2006).
[Crossref]

IEEE J. of Lightwave Tech. (1)

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE J. of Lightwave Tech., 21, pp.2705–2714, (2003).
[Crossref]

IEEE Phot. Tech. Lett. (1)

S. Yamashita and G.J. Cowle, “Bidirectional 10-GHz Optical Comb Genereation with an Intracavity Fiber DFB Pumped Brillouin/Erbium Fiber Laser”, IEEE Phot. Tech. Lett., 10, pp.796–798, (1998).
[Crossref]

IEEE Transactions on Broadcasting (1)

Q. Chen and X. Guan, “Spectrum analysis of phase amplitude modulation”, IEEE Transactions on Broadcasting, 36, pp.34–36, (1990).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

J.D. Bull, N.A.F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE, 5577, pp.133–143, (2005).
[Crossref]

Other (5)

S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, and P.W. Judoawlkis, “Optical Frequency Comb Generation from Modelocked Diode Lasers - Techniques and Applications” Digest of the LEOS Summer Topical Meetings, pp.71–72, (2005).

A.D. Ellis, F.C. Garcia-Gunning, and T. Healy, “Coherent WDM: The achievement of high spectral density through phase control within the transmitter”, Tech. Dig. OFC’06, Anaheim, 2006, OThR4.

F.C. Garcia-Gunning and A.D. Ellis, “Generation of widely spaced optical frequency comb using an amplitude modulator pair,” in Proc. SPIE - Opto-Ireland Symposium 5825B-74, pp.469–474, (2005).

S.C. Zeller, G.J. Spuhler, L. Krainer, R. Paschotta, U. Keller, and K.P. Hansen, “Frequency comb generation with 50-GHz channel spacing in the telecom C-band” Tech Dig. CLEO’05, San Francisco, 2005, pp. 221.

J. Capmany, D. Pastor, and B. Ortega, “Microwave signal processing using optics”, Tech Dig. OFC’05,Anaheim, 2005, pp.23–76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of comb generator experimental configuration

Fig. 2.
Fig. 2.

Optimised comb flatness versus relative drive amplifier amplitude for 7 (squares), 9 (circles), 11 (triangles), 13 (diamonds) and 15 (star) comb lines.

Fig. 3.
Fig. 3.

Optimised comb flatness versus drive voltage applied to each modulator for 11 lines.

Fig. 4.
Fig. 4.

Experimental spectrum of an 11 channel optical comb.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E k = E 0 p ε p , ε p = A p , k cos [ 2 π ( f 0 + pf ) t + θ p , k ]
A p , k = 1 2 cos [ ( a k + p ) π 2 ] J p ( b k π 4 ) , θ p , k = [ 1 + p + ( 1 ) p ] π 2 + p ϕ 1 + ϕ in
E out = E 0 q ε q '
ε q ' = 1 2 p A p , 1 { [ ( 1 ) 2 p q A p q , 2 + ( 1 ) q A q p , 2 ] .
cos [ 2 π ( f 0 + qf ) t + q π 2 + ( q p ) ϕ 2 ] }

Metrics