Abstract

A high-conversion-efficiency widely-tunable all-fiber optical parametric oscillator is described. It is based on modulation instability in the normal dispersion regime near the fiber’s zero-dispersion wavelength. A 40 m long dispersion-shifted fiber is used in a synchronously pumped ring cavity. We demonstrate continuous sideband tuning from 1300 to 1500 nm and 1600 to 1860 nm by tuning the pump wavelength between 1532 and 1556 nm. Internal conversion efficiencies of up to 40% are achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980).
    [CrossRef]
  2. M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
    [CrossRef] [PubMed]
  3. K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
    [CrossRef] [PubMed]
  4. D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
    [CrossRef]
  5. S. Coen and M. Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett. 26, 39-41 (2001).
    [CrossRef]
  6. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002).
    [CrossRef]
  7. S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
    [CrossRef]
  8. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002)
    [CrossRef]
  9. J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
    [CrossRef]
  10. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
    [CrossRef] [PubMed]
  11. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005).
    [CrossRef] [PubMed]
  12. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express 14, 9491-9501 (2006).
    [CrossRef] [PubMed]
  13. C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett. 6, 493-495 (1981).
    [CrossRef] [PubMed]
  14. S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
    [CrossRef]
  15. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
    [CrossRef]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]
  17. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
    [CrossRef] [PubMed]
  18. G. Cappellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991).
    [CrossRef]
  19. M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett. 26, 620-622 (2001).
    [CrossRef]
  20. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]

2006 (1)

2005 (2)

2004 (2)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
[CrossRef] [PubMed]

2003 (4)

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
[CrossRef] [PubMed]

S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
[CrossRef]

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

2002 (3)

2001 (2)

1999 (1)

1991 (1)

1989 (1)

1988 (1)

M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980).
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980).
[CrossRef]

Cappellini, G.

Chen, A. Y. H.

Chen, J. S. Y.

Coen, S.

de Matos, C. J. S.

Deng, Y.

Devgan, P.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

Fiorentino, M.

Haelterman, M.

Hansen, K. P.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Harvey, J. D.

Hasegawa, A.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980).
[CrossRef]

Haus, H. A.

K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
[CrossRef] [PubMed]

M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
[CrossRef] [PubMed]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Ho, M. C.

Kazovsky, L. G.

Kishi, M.

S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
[CrossRef]

Knight, J. C.

Knox, W. H.

Kumar, P.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002)
[CrossRef]

D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
[CrossRef]

Lasri, J.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

Leonhardt, R.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Lin, C.

Lin, Q.

Lu, F.

Marhic, M. E.

Millot, G.

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Murdoch, S. G.

Nakazawa, M.

K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
[CrossRef] [PubMed]

M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
[CrossRef] [PubMed]

Pearson, A. D.

Pitois, S.

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Reed, W. A.

Russell, P. St. J.

Saito, S.

S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
[CrossRef]

Serkland, D. K.

Shang, H. T.

Sharping, J. E.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002)
[CrossRef]

Suzuki, K.

K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
[CrossRef] [PubMed]

M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
[CrossRef] [PubMed]

Tang, R.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

Taylor, J. R.

Trillo, S.

Tsai, T. E.

Tsuchiya, M.

S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
[CrossRef]

Wadsworth, W. J.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Windeler, R. S.

Wong, G. K. L.

Wong, K. K. Y.

Electron. Lett. (1)

S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (11)

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett. 6, 493-495 (1981).
[CrossRef] [PubMed]

K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
[CrossRef] [PubMed]

D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
[CrossRef]

S. Coen and M. Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett. 26, 39-41 (2001).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett. 26, 620-622 (2001).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002)
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
[CrossRef] [PubMed]

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
[CrossRef] [PubMed]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
[CrossRef] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental configuration: ECL, external-cavity laser; ISO, isolator; EDFA, Erbium-doped fiber amplifier; PC, polarization controller; WDM, wavelength division multiplexer; DSF, dispersion-shifted fiber.

Fig. 2.
Fig. 2.

Spectra of the FOPO output for a range of different pump wavelengths. The pump peak power is 50 W.

Fig. 3.
Fig. 3.

Experimentally measured sideband wavelengths as a function of pump wavelength of the FOPO output (circles). The crosses are calculated from the experimentally measured anti-Stokes wavelengths. Theoretical sideband wavelengths predicted by Eq. (2) (solid curves). Inset, spectrum of the FOPO output at a pump wavelength of 1536.5 nm. The corresponding sideband wavelengths are also shown (stars). The pump peak power is 50 W.

Fig. 4.
Fig. 4.

(a). Internal conversion efficiency versus wavelength of the FOPO (circles). The internal conversion efficiencies calculated from the spectrum in the inset of Fig. 3 are also shown (stars). (b). Linewidth of the sideband as a function of wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β ( ω p + Ω ) + β ( ω p Ω ) 2 β ( ω p ) + 2 γP = 0 ,
β 2 Ω 2 + β 4 Ω 4 12 + 2 γP = 0 .

Metrics