Abstract

After characterizing the Raman scattering in a fused silica polarization-maintaining microstructure optical fiber, we built a fiber-based two-photon light source of high spectral brightness, broad spectral range, and very low noise background at room temperature. The resulting bright low-noise two-photon light can be used for a number of quantum information applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970).
    [CrossRef]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  3. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  4. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
    [CrossRef] [PubMed]
  5. L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
    [CrossRef]
  6. J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001).
    [CrossRef]
  7. M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
    [CrossRef]
  8. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  9. X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  10. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13,534-544 (2005).
    [CrossRef] [PubMed]
  11. J. Fan, A. Dogariu, L. J. Wang, "Generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 1530 (2005).
    [CrossRef] [PubMed]
  12. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett.,  30, 3368 (2005).
    [CrossRef]
  13. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers", Opt. Lett. 31, 1286-1288 (2006).
    [CrossRef] [PubMed]
  14. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905 (2006).
    [CrossRef] [PubMed]
  15. G. P. Agrawal: Nonlinear Fiber Optics, 2nd ed. (New York, Academic ,1995).
  16. P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004).
    [CrossRef]
  17. J. C. Knight, T. A. Birks, and P. St. J. Russell, D. M. Atkin, "Endlessly single-mode photonic crystal fibers," Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  18. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  19. NL-PM-740, http://www.thorlabs.com.
  20. R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982).
    [CrossRef]
  21. E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
    [CrossRef]
  22. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999).
    [CrossRef]
  23. F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
    [CrossRef]
  24. S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
    [CrossRef]
  25. S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002).
    [CrossRef]
  26. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
    [CrossRef]

2006

2005

2004

P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

2002

M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002).
[CrossRef]

2001

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
[CrossRef]

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001).
[CrossRef]

1999

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

1997

1996

1986

E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
[CrossRef]

1982

R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982).
[CrossRef]

1970

D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970).
[CrossRef]

Agrawal, G. P.

Albota, M. A.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Atkin, D. M.

Baldi, P.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Birks, A.

Birks, T. A.

Bosch, M. A.

R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982).
[CrossRef]

Burnham, D. C.

D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970).
[CrossRef]

Chen, J.

Chen, Y.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Chernikov, S. V.

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999).
[CrossRef]

Desurvire, E.

E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
[CrossRef]

Digonnet, M. J. E.

E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
[CrossRef]

Dogariu, A.

Duligall, J.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Fan, J.

Fiorentino, M.

M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001).
[CrossRef]

Friberg, S. R.

L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
[CrossRef]

Fulconis, J.

Hans, T.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Hong, C. K.

L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Jay, P. L.

M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Knight, J. C.

Koch, F.

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

Konig, F.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002).
[CrossRef]

Kumar, P.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905 (2006).
[CrossRef] [PubMed]

X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Lee, K. F.

Lewis, S. A. E.

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999).
[CrossRef]

Li, X.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905 (2006).
[CrossRef] [PubMed]

X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Liang, C.

Lin, Q.

Mason, E. J.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Mason, S. J.

Migdall, A.

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Rarity, J. G.

Riedmatten, F. D.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Russell, P. S. J.

Russell, P. St. J.

Sharping, J. E.

X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001).
[CrossRef]

Shaw, H. J.

E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
[CrossRef]

Stolen, R. H.

R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Tanzilli, S.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Taylor, J. R.

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999).
[CrossRef]

Tittle, W.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Voss, P.

X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905 (2006).
[CrossRef] [PubMed]

P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004).
[CrossRef]

M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Wadsworth, W. J.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Wang, L. J.

Weinberg, D. L.

D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Wong, F. N. C.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002).
[CrossRef]

Yaman, F.

Yang, T.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Zbinden, H.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Zhang, A.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Elec. Lett.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001).
[CrossRef]

Electron. Lett.

F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. Lightwave Technol.

E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986).
[CrossRef]

J. Opt. B: Quantum and Semiclass. Opt.

L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt.

P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004).
[CrossRef]

Nature

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Phys. Rev. Lett.

X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970).
[CrossRef]

R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982).
[CrossRef]

Other

G. P. Agrawal: Nonlinear Fiber Optics, 2nd ed. (New York, Academic ,1995).

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

NL-PM-740, http://www.thorlabs.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Creation of two-photon light by degenerate SFWM. A two-pass grating configuration with polarizing beam splitter (PBS) is used. The signal and idler photons selected by adjustable slits are retro-reflected back to the grating, and put back into single spatial modes upon exiting the grating. They are collected into SMFs to be fed into single photon detectors.

Fig. 2.
Fig. 2.

Measured signal photon (a) and idler photon rates (b) at a range of wavelengths. Signal and idler wavelengths in the same color are correlated. (c) Normalized Raman scattering gain. Measured two-photon coincidence rate (d) and coincidence/accidental contrast (e), where results with same pump powers are labeled with the same color.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δϕ = ( k signal + k idler 2 k P ) + 2 γPz
= [ k ( 2 ) ( Δω ) 2 + 2 m = 1 k ( 2 m ) ( 2 m ) ! ( Δω ) 2 m + 2 γP ] ,
N idler = D idler D idler background η idler D coin D acci η signal η idler ,
N idler = R ( Δω ) L eff BP ( 1 + 1 e kT 1 ) ,

Metrics