Abstract

Traditionally, Single Photon Avalanche Diodes (SPADs) are fabricated using dedicated processes that require additional technological steps when compared to standard CMOS. Instead, this paper presents the design of SPADs that attain good performances, by using a standard high-voltage CMOS process. The detector is monolithically integrated together with an Active Quenching Circuit (iAQC), a counter, and a serial communication interface. This opens the way to the design and fabrication of ultra compact multi-channel single-photon counters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
    [CrossRef]
  2. B. F. Aull, A. H. Loomis, J. A. Gregory, and D. J. Young, "Geiger-mode Avalanche Photodiode Arrays Integrated with CMOS Timing Circuits," in Proceedings of the 56th Annual Device Research Conference Digest, 22-24 June 1998, 58-59.
  3. A. Restelli, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, "Monolithic Matrix of 50 μm Silicon SPAD Detectors," presented at Single-Photon Workshop (SPW) 2005: Sources, Detectors, Applications and Measurement Methods, Teddington, UK, 24 - 26 October 2005.
  4. C. Niclass and E. Charbon, "A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging," in Proceedings of IEEE International Solid-State Circuits Conference 2005 (Institute of Electrical on Electronics Engineers, New York, 2005), pp. 364-365, 604.
  5. F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
    [CrossRef]
  6. V. O’Connor and D. Phillips, Time-correlated Single Photon Counting (Academic Press, London, 1984).
  7. A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, "Large-area avalanche diodes for picosecond time-correlated photon counting," in Proceedings of 35th European Solid-State Device Research Conference ESSDERC 2005 (Institute of Electrical on Electronics Engineers, New York, 2005), pp. 355- 358.
  8. F. Zappa, S. Cova, and M. Ghioni, "Monolithic circuit of active quenching and active reset for avalanche photodiodes, " US patent 6,541,752 B2, 1 April 2003 (priority date March 9, 2000).
  9. S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
    [CrossRef]
  10. M. Ghioni, A. Gulinatti, P. Maccagnani, I. Rech, and S. D. Cova, "Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution," presented at SPIE-Optics East Conference, Boston, 4 October 2006.
  11. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).
  12. S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
    [CrossRef]
  13. A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994).
    [CrossRef] [PubMed]
  14. A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
    [CrossRef]

2004

A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
[CrossRef]

2003

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

1994

1993

S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
[CrossRef]

1991

S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
[CrossRef]

1989

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

Baronti, F.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Belluso, M.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Besse, P.

A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
[CrossRef]

Bonaccini Calia, D.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Bonanno, G.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Cova, S.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Francese, P. A.

Ghioni, M.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

Giudice, A. C.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

Lacaita, A.

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

Lotito, A.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

Maccagnani, P.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Mattingly, Q. L.

S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
[CrossRef]

Popovic, R.

A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
[CrossRef]

Ripamonti, G.

S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
[CrossRef]

Rochas, A.

A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
[CrossRef]

Roncella, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Saletti, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Silber, A.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Soper, S. A.

S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
[CrossRef]

Tisa, S.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Vegunta, P.

S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
[CrossRef]

Zappa, F.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994).
[CrossRef] [PubMed]

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Anal. Chem.

S. A. Soper, Q. L. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules," Anal. Chem. 65, 740-747 (1993).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

IEEE Electron Device Lett.

S. Cova, A. Lacaita, and G. Ripamonti, "Trapping Phenomena in Avalanche Photodiodes on Nanoseconds Scale," IEEE Electron Device Lett. 12, 685-687 (1991).
[CrossRef]

IEEE J. Solid-state Circuits

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-state Circuits 38, 1298 - 1301 (2003).
[CrossRef]

J. Mod. Opt.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt.(in press, DOI: 10.1080/09500340600742320).

Sens. Actuators A

A. Rochas, P. Besse, and R. Popovic, "Actively recharged single photon counting avalanche photodiode integrated in an industrial CMOS process," Sens. Actuators A 110, 124-129 (2004).
[CrossRef]

Other

B. F. Aull, A. H. Loomis, J. A. Gregory, and D. J. Young, "Geiger-mode Avalanche Photodiode Arrays Integrated with CMOS Timing Circuits," in Proceedings of the 56th Annual Device Research Conference Digest, 22-24 June 1998, 58-59.

A. Restelli, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, "Monolithic Matrix of 50 μm Silicon SPAD Detectors," presented at Single-Photon Workshop (SPW) 2005: Sources, Detectors, Applications and Measurement Methods, Teddington, UK, 24 - 26 October 2005.

C. Niclass and E. Charbon, "A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging," in Proceedings of IEEE International Solid-State Circuits Conference 2005 (Institute of Electrical on Electronics Engineers, New York, 2005), pp. 364-365, 604.

V. O’Connor and D. Phillips, Time-correlated Single Photon Counting (Academic Press, London, 1984).

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, "Large-area avalanche diodes for picosecond time-correlated photon counting," in Proceedings of 35th European Solid-State Device Research Conference ESSDERC 2005 (Institute of Electrical on Electronics Engineers, New York, 2005), pp. 355- 358.

F. Zappa, S. Cova, and M. Ghioni, "Monolithic circuit of active quenching and active reset for avalanche photodiodes, " US patent 6,541,752 B2, 1 April 2003 (priority date March 9, 2000).

M. Ghioni, A. Gulinatti, P. Maccagnani, I. Rech, and S. D. Cova, "Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution," presented at SPIE-Optics East Conference, Boston, 4 October 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Architecture of the monolithic Single-Photon Counter.

Fig. 2.
Fig. 2.

Microphotograph of the CMOS Single Photon Counter, with the different stages highlighted. Overall dimensions are 1.1 mm × 2 mm. The SPAD has a diameter of 12 μm.

Fig. 3.
Fig. 3.

Cross section of the CMOS SPAD. The diameter is 12 μm.

Fig. 4.
Fig. 4.

Input sensing stage responsible for the active-quenching and active reset of the on-chip single-photon avalanche diode.

Fig. 5.
Fig. 5.

Block diagram of the Counting and Communication Stage.

Fig. 6.
Fig. 6.

Voltage at the cathode and current flowing through the SPAD, during an avalanche. Current is promptly quenched by the iAQC in about 8 ns, thus reducing charge trapping. A rare afterpulsing event occurring during the reset phase is also visible.

Fig. 7.
Fig. 7.

Voltage at the cathode and TTL output when the circuit is operated with the minimum hold-off and at a counting rate of about 15 Mcps, close to the 30 Mcps saturated value. The screenshot is acquired using the infinite persistence function of the oscilloscope. It can be seen that an avalanche can be triggered after 34 ns from the previous one.

Fig. 8.
Fig. 8.

Voltage at the cathode and TTL output when the circuit is operated with the minimum hold-off and in gated mode. The gate-on time, during which the circuit can detect an incoming photon, is 50ns long. The gate-off time is 150ns long.

Fig. 9.
Fig. 9.

Example of communication at 3Mbps between the CCS and a remote PC. On the left, the PC sends the command to initiate data acquisition (RX line) and the CCS starts to send a byte every time-window of 6.5 μs, containing the number of avalanche occurred during the previous time-window (TX line). On the right, the PC sends the command to stop acquisition (RX line) and the CCS stops sending data (TX line).

Fig. 10.
Fig. 10.

Dark-counting Rate of a typical CMOS SPAD with 12 μm diameter as a function of the applied overvoltage and at different temperatures.

Fig. 11.
Fig. 11.

Measured Photon Detection Efficiency of a CMOS SPAD at different overvoltages. Data is corrected to account for afterpulsing, that however was kept below 1% thanks to a long enough hold-off time.

Fig. 12.
Fig. 12.

Measured Photon Detection Efficiency at different wavelengths and overvoltages. Data is corrected to account for afterpulsing, that however was kept below 1% thanks to a long enough hold-off time.

Fig. 13.
Fig. 13.

Principle of TCCC: an histogram of the delay between the filling stimulus and the release of the first carrier is collected [12].

Fig. 14.
Fig. 14.

Instrumentation set-up used to investigate deep trapping levels in the avalanching junction of the fabricated CMOS SPAD.

Fig. 15.
Fig. 15.

Temporal sequence of the signals in a measurement. The first pulse is the filling event while the second pulse is the after-pulse.

Fig. 16.
Fig. 16.

Afterpulsing probability for a typical CMOS SPAD, for two different values of the hold-off time, at a 5 V-overvoltage and 3V-undervoltage. The release time constant is 3.5 ns in both cases; the total afterpulsing probability falls from 2.6% down to 0.02% when the hold-off is increased from 55 ns to 200 ns.

Fig. 17.
Fig. 17.

Afterpulsing probability for a typical CMOS SPAD at 5 V-overvoltage, in two different working conditions: with 200 ns hold-off and 7 V-undervoltage, and with 55 ns hold-off and 3 V-undervoltage. The more efficient detrapping at lower undervoltages yields to the same afterpulsing probability, even with the much shorter hold-off time.

Fig. 18.
Fig. 18.

SPAD timing response at 10 V-overvoltage. FWHM is 36 ps, whereas the slow tail with 910 ps-time constant is due to photons absorbed in the SPAD neutral layer.

Fig. 19.
Fig. 19.

Measured FWHM of the timing response at different overvoltages for the Single-Photon Counter chip.

Metrics