Abstract

Polarization-sensitive detection of elastic backscattered light is useful for detection of cloud phase and depolarizing aerosols. The U.S. Department of Energy’s Atmospheric Radiation Measurement Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques, which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio δlinear, the circular depolarization ratio δcirc, and this MPL depolarization ratio δMPL.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Stephens,  et al., "The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," Am. Meteorol. Soc. 47, 1742-1753, (1990).
  2. G. L. Stephens,  et al., "The CLOUDSAT mission and the A-Train," Bull. Amer. Meteorol. Soc. 83, 1771-1790, (2002).
    [CrossRef]
  3. K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Amer. Meteor. Soc. 72, 1848-1866 (1991).
    [CrossRef]
  4. G. P. Gobbi, "Polarization lidar returns from aerosols and thin clouds: a framework for the analysis," Appl. Opt. 37, 5505-5508 (1999).
    [CrossRef]
  5. J. D. Spinhirne, "Micro pulse lidar," IEEE Trans. Geosci. Remote Sens. 31, 48-55 (1993).
    [CrossRef]
  6. J. R. Campbell et al., "Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: instruments and data processing," J. Atmos. Ocean. Tech. 19, 431-442 (2002).
    [CrossRef]
  7. M. Del Guasta,  et al., " Use of polarimetric lidar for the study of oriented ice plates in clouds," Appl. Opt. 45, 4878-4887 (2006).
    [CrossRef] [PubMed]
  8. Y. X. Hu,  et al., "Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
    [CrossRef]
  9. J. W. Hovenier et al., "Conditions for the elements of the scattering matrix," Astron. Astrophys. 157, 301-310 (1986).
  10. P. Yang,  et al., "Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase," Appl. Opt. 42, 4389-4395 (2003).
    [CrossRef] [PubMed]
  11. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
    [CrossRef] [PubMed]
  12. J. Harrington and J. Verlinde, "Mixed-Phase Arctic Clouds Experiment (M-PACE)," http://www.meteo.psu.edu/~verlinde/sciencedoc.pdf
  13. E. W. Eloranta, "High Spectral Resolution Lidar" in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, ed., (Springer-Verlag, New York, 2005).
  14. J. Biele,  et al., "Polarization lidar: Corrections of instrumental effects," Opt. Express 7, 427-435 (2000).
    [CrossRef] [PubMed]
  15. A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002).
    [PubMed]
  16. J. D. Houston and A. I. Carswell, "Four-component polarization measurement of lidar atmospheric scattering," Appl. Opt. 17, 614-620 (1978).
    [CrossRef] [PubMed]

2006

2003

P. Yang,  et al., "Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase," Appl. Opt. 42, 4389-4395 (2003).
[CrossRef] [PubMed]

Y. X. Hu,  et al., "Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

2002

J. R. Campbell et al., "Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: instruments and data processing," J. Atmos. Ocean. Tech. 19, 431-442 (2002).
[CrossRef]

G. L. Stephens,  et al., "The CLOUDSAT mission and the A-Train," Bull. Amer. Meteorol. Soc. 83, 1771-1790, (2002).
[CrossRef]

A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002).
[PubMed]

2000

1999

1995

1993

J. D. Spinhirne, "Micro pulse lidar," IEEE Trans. Geosci. Remote Sens. 31, 48-55 (1993).
[CrossRef]

1991

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Amer. Meteor. Soc. 72, 1848-1866 (1991).
[CrossRef]

1990

G. L. Stephens,  et al., "The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," Am. Meteorol. Soc. 47, 1742-1753, (1990).

1986

J. W. Hovenier et al., "Conditions for the elements of the scattering matrix," Astron. Astrophys. 157, 301-310 (1986).

1978

Behrendt, A.

Biele, J.

Campbell, J. R.

J. R. Campbell et al., "Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: instruments and data processing," J. Atmos. Ocean. Tech. 19, 431-442 (2002).
[CrossRef]

Carswell, A. I.

Del Guasta, M.

Gobbi, G. P.

Houston, J. D.

Hovenier, J. W.

M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
[CrossRef] [PubMed]

J. W. Hovenier et al., "Conditions for the elements of the scattering matrix," Astron. Astrophys. 157, 301-310 (1986).

Hu, Y. X.

Y. X. Hu,  et al., "Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

Mishchenko, M. I.

Nakamura, T.

Sassen, K.

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Amer. Meteor. Soc. 72, 1848-1866 (1991).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, "Micro pulse lidar," IEEE Trans. Geosci. Remote Sens. 31, 48-55 (1993).
[CrossRef]

Stephens, G. L.

G. L. Stephens,  et al., "The CLOUDSAT mission and the A-Train," Bull. Amer. Meteorol. Soc. 83, 1771-1790, (2002).
[CrossRef]

G. L. Stephens,  et al., "The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," Am. Meteorol. Soc. 47, 1742-1753, (1990).

Yang, P.

Am. Meteorol. Soc.

G. L. Stephens,  et al., "The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," Am. Meteorol. Soc. 47, 1742-1753, (1990).

Appl. Opt.

Astron. Astrophys.

J. W. Hovenier et al., "Conditions for the elements of the scattering matrix," Astron. Astrophys. 157, 301-310 (1986).

Bull. Amer. Meteor. Soc.

K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Amer. Meteor. Soc. 72, 1848-1866 (1991).
[CrossRef]

Bull. Amer. Meteorol. Soc.

G. L. Stephens,  et al., "The CLOUDSAT mission and the A-Train," Bull. Amer. Meteorol. Soc. 83, 1771-1790, (2002).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

J. D. Spinhirne, "Micro pulse lidar," IEEE Trans. Geosci. Remote Sens. 31, 48-55 (1993).
[CrossRef]

J. Atmos. Ocean. Tech.

J. R. Campbell et al., "Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: instruments and data processing," J. Atmos. Ocean. Tech. 19, 431-442 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

Y. X. Hu,  et al., "Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Harrington and J. Verlinde, "Mixed-Phase Arctic Clouds Experiment (M-PACE)," http://www.meteo.psu.edu/~verlinde/sciencedoc.pdf

E. W. Eloranta, "High Spectral Resolution Lidar" in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, ed., (Springer-Verlag, New York, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Basic optical layout corresponding to configuration MPL-4B.

Fig. 2.
Fig. 2.

Polarized MPL profiles from top to bottom: 2(a) “Co-polarized” backscatter profile collected in circularly polarized mode displayed range-corrected in log10(MHz-km2), 2(b) “Depolarized” backscatter profile collected in linearly polarized mode displayed range-corrected in log10(MHz-km2), 2(c) Profiles of log10(effective linear depolarization ratio).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P final ( φ ) = M LPH M LCR ( φ , 45 ) M atm M LCR ( φ , + 4 5 ) M LPV P initial
M atm = a [ 1 0 0 0 0 1 d 0 0 0 0 d 1 0 0 0 0 2 d 1 ] .
P ( 0 ) = d 2 d 2 0 0 , P ( 0 ) = 1 d 2 d 2 1 0 0 , P ( π 2 ) = 1 d 1 d 0 0 , P ( π 2 ) = d d 0 0
δ MPL = P ( 0 ) P ( π 2 ) , δ linear = P ( 0 ) P ( 0 ) , and δ circ = P ( π 2 ) P ( π 2 ) .
δ MPL = d 2 ( 1 d ) , δ linear = d 2 d , and δ circ = d 1 d .
δ MPL = δ circ. 2 = δ linear ( 1 δ linear ) or δ linear = δ MPL δ MPL + 1 and δ circ. = 2 × δ MPL .
P ( 0 ) = P ( π 2 ) + P ( 0 )
P = P ( π 2 ) + 2 P ( 0 )

Metrics