Abstract

The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers. We present a theoretical and experimental analysis of two-grating phasing in a broadband pulse mosaic compressor. The phase defaults induced by misaligned gratings are studied. Monochromatic grating phasing is experimentally achieved with an interferometric technique and pulse compression is demonstrated with a two-phased-array grating system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  2. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997).
    [CrossRef]
  3. T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
    [CrossRef]
  4. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, "Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers," Opt. Lett. 29, 635-637 (2004).
    [CrossRef] [PubMed]
  5. C. Le Blanc, C. Felix, J. C. Lagron, N. Forget, P. Hollander, A. M. Sautivet, F. Amiranoff, and A. Migus, "The Petawatt laser chain at LULI: from the diode-pumped front end to the new generation of compact compressor," Proceeding Third International Conference on Inertial Fusion Sciences and Applications (IFSA), Chap X - 608, Eds B. A. Hammel, D. D. Meyerhofer, J. Meyer-ter-Vehn, and H. Azechi (2003).
  6. M. C. Rushford, W. A. Molander, J. D. Nissen, I. Jovanovic, J. A. Britten, and C. P. J. Barty, "Diffraction grating eigenvector for translational and rotational motion," Opt. Lett. 31, 155-157 (2006).
    [CrossRef] [PubMed]
  7. T. Jitsuno, H. Kai, M. C. Rushford, N. Miyanaga, S. Motokoshi, G. Xu, K. Kondo, R. Kodama, H. Shiraga, K. A. Tanaka, K. Tsubakimoto, H. Habara, J. A. Britten, C. P. J. Barty, and K. Mima, "Groove density compensation of segmented gratings in large scale pulse compressor," Fourth Intenational Conference on Inertial Fusion Sciences and Applications (IFSA), Biarritz (2005).
  8. T. J. Kessler, J. Bunkenburg, and H. Huang, "Grating Array Systems for the alignment and control of the spatial and temporal characteristics of light," U.S. Patent Application (2003).
  9. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  10. M. Trentelman, I. N. Ross, and C. Danson, "Finite size compression gratings in a large aperture chirped pulse amplification laser system," Appl. Opt. 36, 8567-8573 (1997).
    [CrossRef]
  11. M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
    [CrossRef]
  12. N. Blanchot, G. Marre, J. Néauport, E. Sibé, C. Rouyer, S. Montant, A. Cotel, C. Le Blanc, and C. Sauteret, "Synthetic aperture compression scheme for multi-petawatt high energy laser," Appl. Opt. 45, 6013-6021 (2006).
    [CrossRef] [PubMed]
  13. R. Diaz-Uribe, and A. Jiménez-Hernandez, "Phase measurement for segmented optics with 1D diffraction patterns," Opt. Express 12, 1192-1204 (2004).
    [CrossRef] [PubMed]
  14. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, "Phasing the mirror segments of the Keck telescopes : the broadband phasing algorithm," Appl. Opt. 37, 140-155 (1998).
    [CrossRef]
  15. N. C. Mehta, and C. W. Allen, "Remote alignment of segmented mirrors with far-field optimization," Appl. Opt. 31, 6510-6518 (1992).
    [CrossRef] [PubMed]
  16. C. Pizzaro, J. Arasa, F. Laguarta, N. Tomas, and A. Pinto, "Design of an interferometric system for the measurement of phasing errors in segmented mirrors," Appl. Opt. 41, 4562-4570 (2002).
    [CrossRef]
  17. J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, "Phase-locked control of tiled-grating assemblies for chirped-pulse-amplified lasers using a Mach-Zehnder interferometer," Opt. Lett. 31, 1561-1563 (2006).
    [CrossRef] [PubMed]
  18. R. L. Kendrick, D. S. Acton, and A. L. Duncan, "Phase diversity wavefront sensor for imaging system," Appl. Opt. 33, 6533-6546 (1994).
    [CrossRef] [PubMed]
  19. J. Flamand, S. Kane, G. De Villele, A. Cotel, and B. Touzet, "New MLD gratings adapted for tiling in petawatt-class lasers," Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA), Biarritz (2005).

2006 (3)

2005 (1)

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

2004 (2)

2002 (1)

1998 (2)

G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, "Phasing the mirror segments of the Keck telescopes : the broadband phasing algorithm," Appl. Opt. 37, 140-155 (1998).
[CrossRef]

T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

1997 (2)

1994 (1)

1992 (1)

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

1969 (1)

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Acton, D. S.

Allen, C. W.

Arasa, J.

Barty, C. P. J.

Blanchot, N.

Bödefeld, R.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Bunkenburg, J.

Chanan, G.

Chow, R.

Cotel, A.

Danson, C.

Dekens, F.

Diaz-Uribe, R.

Duncan, A. L.

Feit, M. D.

Hein, J.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Hornung, M.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Huang, H.

Jiménez-Hernandez, A.

Jovanovic, I.

Kato, Y.

T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Kendrick, R. L.

Kessler, T. J.

Kirkman, D.

Kozlov, A.

Laguarta, F.

Le Blanc, C.

Li, L.

Loomis, G. E.

Marre, G.

Mast, T.

Mehta, N. C.

Meyerhofer, D. D.

Michaels, S.

Molander, W. A.

Montant, S.

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Néauport, J.

Nelson, J.

Nguyen, H. T.

Nissen, J. D.

Perry, M. D.

Pinto, A.

Pizzaro, C.

Podelska, S.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Ross, I. N.

Rouyer, C.

Rushford, M. C.

Sauerbrey, R.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Sauteret, C.

Schnepp, M.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Shore, B. W.

Sibé, E.

Siebold, M.

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Skulski, W.

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Tomas, N.

Treacy, E. B.

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Trentelman, M.

Troy, M.

Yonemura, M.

T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Zhang, T.

T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Appl. Opt. (6)

IEEE J. Quantum Electron. (1)

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

T. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

M. Hornung, R. Bödefeld, M. Siebold, S. Podelska, M. Schnepp, J. Hein, and R. Sauerbrey, "Alignment of a multigrating mosaic compressor in a PW-class CPA laser," Proc. SPIE 5962, 59622K (2005).
[CrossRef]

Other (4)

C. Le Blanc, C. Felix, J. C. Lagron, N. Forget, P. Hollander, A. M. Sautivet, F. Amiranoff, and A. Migus, "The Petawatt laser chain at LULI: from the diode-pumped front end to the new generation of compact compressor," Proceeding Third International Conference on Inertial Fusion Sciences and Applications (IFSA), Chap X - 608, Eds B. A. Hammel, D. D. Meyerhofer, J. Meyer-ter-Vehn, and H. Azechi (2003).

T. Jitsuno, H. Kai, M. C. Rushford, N. Miyanaga, S. Motokoshi, G. Xu, K. Kondo, R. Kodama, H. Shiraga, K. A. Tanaka, K. Tsubakimoto, H. Habara, J. A. Britten, C. P. J. Barty, and K. Mima, "Groove density compensation of segmented gratings in large scale pulse compressor," Fourth Intenational Conference on Inertial Fusion Sciences and Applications (IFSA), Biarritz (2005).

T. J. Kessler, J. Bunkenburg, and H. Huang, "Grating Array Systems for the alignment and control of the spatial and temporal characteristics of light," U.S. Patent Application (2003).

J. Flamand, S. Kane, G. De Villele, A. Cotel, and B. Touzet, "New MLD gratings adapted for tiling in petawatt-class lasers," Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA), Biarritz (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Phased-array grating compressor scheme with the five degrees of freedom between the two adjacent diffraction gratings G21 and G22 (Δz, Δy, θx, θy, θz).

Fig. 2.
Fig. 2.

Representation of grating mosaic (G21-G22) misalignments (top) and far-field intensity distribution (bottom) without phase defaults (a), with a differential piston phase error of π (b), with a differential tilt θy = 2 μrad (c), and with a differential tip θx = 4 μrad (d). The peak intensities (b-d) are normalized to the maximum peak intensity without phase defaults.

Fig. 3.
Fig. 3.

Evolution of the pulse duration at the output of the grating mosaic compressor versus the piston (a), tilt (b) and tip (c) phase defaults. The Fourier transform limited pulse duration is τ0 = 400 fs.

Fig. 4.
Fig. 4.

Fringe matching technique with 5 steps (a-e) for grating mosaic alignment with a monochromatic, cw Fizeau interferometer. The interferometer circular aperture is 150mm centred on the grating gap.

Fig. 5.
Fig. 5.

Two gold-coated phased gratings in -1 order at Littrow aligned by a Fizeau interferometer and the fringe matching technique.

Fig. 6.
Fig. 6.

Experimental phased-grating wavefront surface (a) and misaligned grating wavefront surface with a π piston (c) and the 2D logarithmic representation of normalized PSF (b), (d) showing the effect of the experimental piston phase errors on the far-field distribution.

Fig. 7.
Fig. 7.

Experimental far-field intensity for phased gratings (a) and for a differential piston phase error of π (b) and comparison with theoretical simulations (c), (d).

Fig. 8.
Fig. 8.

Michelson interferometer setup for grating phasing embedded in the pulse compressor. M, reference mirror ; G1-G2 diffraction gratings (left). Interference fringe patterns of each grating (right).

Fig. 9.
Fig. 9.

Optical schematic of Ti:Sa CPA laser with the phased grating compressor and pulse diagnostics. PC’s, Pockels cells ; P, polarizers ; Elev., periscope; G1-G21-G22, diffraction gratings ; RM, roof mirror.

Fig. 10.
Fig. 10.

Spatial beam profiles with a standard monolithic compressor (X cut : black curve, Y cut : green curve) and with a grating mosaic compressor (X cut : red curve, Y cut : blue curve).

Fig. 11.
Fig. 11.

(a) Measured 2ω autocorrelation with a monolithic compressor (black curve) and a grating mosaic compressor (red curve). The deconvolved pulse is broadened from 300 fs to 420 fs by a central spectral clipping. (b) Calculated temporal profile by pulse spectrum (Δλ = 5 nm FWHM) FFT without phase (T o = 310 fs FWHM) and 2ω autocorrelation in the case of the mosaic compressor.

Tables (1)

Tables Icon

Table 1. Constant and linear phase defaults corresponding to the five degrees of freedom plus the grating period mismatch in the case of a single-pass two-phased-grating system. k is the wave number, λ0 is the central wavelength, α is the incidence angle on the grating, β0 is the diffracted angle at the central wavelength, d is the grating period and (Δx, Δz, Δd, ε X , ε y , ε z ) are the degrees of freedom between the two adjacent gratings.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β ( λ ) = Arcsin [ λ d sin ( α ) ]
ϕ ( ω ) = ϕ 0 + ϕ 1 ( ω ω 0 ) + 1 2 ϕ 2 ( ω ω 0 ) 2 + 1 6 ϕ 3 ( ω ω 0 ) 3 + o ( ( ω ω 0 ) 4 )

Metrics