Abstract

We report the application of a set of twin optical tweezers to trap and oscillate a ConA (lectin)- coated polystyrene particle and to measure its interaction with glycoprotein receptors at the cellular plasma membrane of a Chinese hamster ovary (CHO) cell. The particle was trapped between two quadratic potential wells defined by a set of twin optical tweezers and was forced to oscillate by chopping on and off one of the trapping beams. We tracked the oscillatory motion of the particle via a quadrant photodiode and measured with a lock-in amplifier the amplitude of the oscillation as a function of frequency at the fundamental component of the driving frequency over a frequency range from 10Hz to 600Hz. By analyzing the amplitude as a function of frequency for a free particle suspended in buffer solution without the presence of the CHO cell and compared with the corresponding data when the particle was interacting with the CHO cell, we deduced the transverse force constant associated with the optical trap and that associated with the interaction by treating both the optical trap and the interaction as linear springs. The force constants were determined to be approximately 2.15pN/μm for the trap and 2.53pN/μm for the lectin-glycoprotein interaction. When the CHO cell was treated with lantrunculin A, a drug that is known to destroy the cytoskeleton of the cell, the oscillation amplitude increased with time, indicating the softening of the cellular membrane, until a steady state with a smaller force constant was reached. The steady state value of the force constant depended on the drug concentration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
    [CrossRef] [PubMed]
  2. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  3. S. Khan and M. P. Sheetz, "Force effects on biochemical kinetics," Annual Review of Biochemistry 66, 785-805 (1997).
    [CrossRef] [PubMed]
  4. D. Leckband, "Measuring the forces that control protein interactions," Annu. Rev. Biophys. Biomol. Struct. 29, 1-26 (2000).
    [CrossRef] [PubMed]
  5. G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
    [CrossRef] [PubMed]
  6. F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
    [CrossRef] [PubMed]
  7. D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
    [CrossRef] [PubMed]
  8. G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715-725 (2003).
    [CrossRef] [PubMed]
  9. Y. Sako and A. Kusumi, "Barriers for lateral diffusion of transferrin receptors in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether," J. Cell Biol. 129, 1559-1574 (1995).
    [CrossRef] [PubMed]
  10. J.-Y. Shao and J. Xu, "A modified micropipette aspiration technique and its application to tether formation from human neutrophils," J. Biomech. Eng. 124, 388-396 (2002).
    [CrossRef]
  11. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  12. M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
    [CrossRef]
  13. L.A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phy. Rev. E,  65, 021906 (2002).
    [CrossRef]
  14. L.A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phy. Rev. E,  73, 031802 (2006).
    [CrossRef]
  15. T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
    [CrossRef]

2006 (1)

L.A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phy. Rev. E,  73, 031802 (2006).
[CrossRef]

2005 (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

2003 (3)

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715-725 (2003).
[CrossRef] [PubMed]

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

2002 (2)

J.-Y. Shao and J. Xu, "A modified micropipette aspiration technique and its application to tether formation from human neutrophils," J. Biomech. Eng. 124, 388-396 (2002).
[CrossRef]

L.A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phy. Rev. E,  65, 021906 (2002).
[CrossRef]

2000 (1)

D. Leckband, "Measuring the forces that control protein interactions," Annu. Rev. Biophys. Biomol. Struct. 29, 1-26 (2000).
[CrossRef] [PubMed]

1997 (1)

S. Khan and M. P. Sheetz, "Force effects on biochemical kinetics," Annual Review of Biochemistry 66, 785-805 (1997).
[CrossRef] [PubMed]

1996 (1)

M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
[CrossRef]

1995 (1)

Y. Sako and A. Kusumi, "Barriers for lateral diffusion of transferrin receptors in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether," J. Cell Biol. 129, 1559-1574 (1995).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Anvaria, B.

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Bao, G.

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715-725 (2003).
[CrossRef] [PubMed]

Barbosa, L. C.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Barjas-Castro, M. L.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Bassereau, P.

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

Bhattacharya, S.

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Brandao, M. M.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Brownell, W. E.

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Cesar, C. L.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Costa, F. F.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Critchley, D. R.

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

Cuvelier, D.

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

Derenyi, I.

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

Dewalt, L. E.

M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Ermilov, S.

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Fontes, A.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Fukumoto, E.

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

Giannone, G.

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Hough, L.A.

L.A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phy. Rev. E,  73, 031802 (2006).
[CrossRef]

L.A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phy. Rev. E,  65, 021906 (2002).
[CrossRef]

Jiang, G.

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

Kas, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Khan, S.

S. Khan and M. P. Sheetz, "Force effects on biochemical kinetics," Annual Review of Biochemistry 66, 785-805 (1997).
[CrossRef] [PubMed]

Kumar, N.

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

Kusumi, A.

Y. Sako and A. Kusumi, "Barriers for lateral diffusion of transferrin receptors in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether," J. Cell Biol. 129, 1559-1574 (1995).
[CrossRef] [PubMed]

Leckband, D.

D. Leckband, "Measuring the forces that control protein interactions," Annu. Rev. Biophys. Biomol. Struct. 29, 1-26 (2000).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Murdock, D.

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Nassoy, P.

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

Ou-Yang, H. D.

L.A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phy. Rev. E,  73, 031802 (2006).
[CrossRef]

L.A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phy. Rev. E,  65, 021906 (2002).
[CrossRef]

M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
[CrossRef]

Qian, F.

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Roopa, T.

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

Saad, S. T. O.

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

Sako, Y.

Y. Sako and A. Kusumi, "Barriers for lateral diffusion of transferrin receptors in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether," J. Cell Biol. 129, 1559-1574 (1995).
[CrossRef] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Shao, J.-Y.

J.-Y. Shao and J. Xu, "A modified micropipette aspiration technique and its application to tether formation from human neutrophils," J. Biomech. Eng. 124, 388-396 (2002).
[CrossRef]

Sheetz, M. P.

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

S. Khan and M. P. Sheetz, "Force effects on biochemical kinetics," Annual Review of Biochemistry 66, 785-805 (1997).
[CrossRef] [PubMed]

Shivashankar, G. V.

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

Suresh, S.

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715-725 (2003).
[CrossRef] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Valentine, M. T.

M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
[CrossRef]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Xu, J.

J.-Y. Shao and J. Xu, "A modified micropipette aspiration technique and its application to tether formation from human neutrophils," J. Biomech. Eng. 124, 388-396 (2002).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

D. Leckband, "Measuring the forces that control protein interactions," Annu. Rev. Biophys. Biomol. Struct. 29, 1-26 (2000).
[CrossRef] [PubMed]

Annual Review of Biochemistry (1)

S. Khan and M. P. Sheetz, "Force effects on biochemical kinetics," Annual Review of Biochemistry 66, 785-805 (1997).
[CrossRef] [PubMed]

Biophys. J. (3)

D. Cuvelier, I. Derenyi, P. Bassereau, and P. Nassoy, "Coalescence of Membrane Tethers: Experiments, Theory, and Applications," Biophys. J. 88, 2714-2726 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, "Dynamics of membrane nanotubulation and DNA self-assembly," Biophys. J. 87, 974-979 (2004).
[CrossRef]

Eur. J Haematol. (1)

M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease," Eur. J Haematol. 70, 207-211 (2003).
[CrossRef] [PubMed]

J. Biomech. Eng. (1)

J.-Y. Shao and J. Xu, "A modified micropipette aspiration technique and its application to tether formation from human neutrophils," J. Biomech. Eng. 124, 388-396 (2002).
[CrossRef]

J. Cell Biol. (1)

Y. Sako and A. Kusumi, "Barriers for lateral diffusion of transferrin receptors in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether," J. Cell Biol. 129, 1559-1574 (1995).
[CrossRef] [PubMed]

J. Phys.: Condens. Matter (1)

M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys.: Condens. Matter 8, 9477-9482 (1996).
[CrossRef]

Nature (2)

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz, "Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin," Nature 424, 334-337 (2003).
[CrossRef] [PubMed]

Nature Materials (1)

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715-725 (2003).
[CrossRef] [PubMed]

Phy. Rev. E (2)

L.A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phy. Rev. E,  65, 021906 (2002).
[CrossRef]

L.A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phy. Rev. E,  73, 031802 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

F. Qian, S. Ermilov, D. Murdock, W. E. Brownell, and B. Anvaria, "Combining optical tweezers and patch clamp for studies of cell membrane electromechanics," Rev. Sci. Instrum. 75, 2937-2942 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A schematic diagram of the experiment setup.

Fig. 2.
Fig. 2.

Normalized oscillation amplitude vs. frequency for optical forced oscillation of a polystyrene micro-sphere (diameters = 2.83μm) in de-ionized water when the optical power was 15mW (open square), 10mW (open triangle), and 5mW (open circle). The solid lines are the theoretical fits based on Eq. (7) given in the appendix.

Fig. 3.
Fig. 3.

The transverse force constant as a function of laser power for optical trapping of a polystyrene particle (d = 2.83μm) suspended in de-ionized water.

Fig. 4.
Fig. 4.

(a) The time-dependence of the relative amplitude of a polystyrene particle (diameter = 2.83μm) executing optical forced oscillation at 50Hz in the vicinity of a CHO cell; the data for ConA-coated particle are denoted by solid squares and the data for a BSA-coated particle are denoted by “*”.

Fig. 4.
Fig. 4.

(b).Normalized amplitude versus frequency for the oscillation of a ConA-coated particle in the vicinity of a CHO cell after the final steady state was reached; the solid line is the theoretical fit based on Eq. (10) given in the Appendix.

Fig. 5.
Fig. 5.

(a). Relative oscillation amplitude as a function of time prior to the drug-treatment (denoted by open squares) and 1 minute after the CHO cell was treated with 50μM of Latrunculin A (Latrunculin A/DMEM), denoted by “*”; the solid lines represent the average general trend of the experimental data.

Fig. 5.
Fig. 5.

(b). Relative oscillation amplitude as a function of time prior to the drug-treatment (denoted by open squares) and 5 minute after the CHO cell was treated with 125μM of Latrunculin A (Latrunculin A/DMEM), denoted by “*”.

Fig. 6.
Fig. 6.

A simplified linear spring model of a particle simultaneously acted upon by optical forces from a set of twin optical tweezers and a cellular interactive force when a cell is in contact with the particle in the equilibrium trapping position of the tweezers on the right.

Tables (1)

Tables Icon

Table 1. A comparison of the transverse force constant for three different cases. In all cases the diameter of the polystyrene particle was 2.83μm, and the optical trapping power was 5mW

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

m x ¨ = β x ˙ k 1 ( x x 1 ) k 2 ( x x 2 )
k 1 = k( e iωt +1) 2
k 2 =k
m x ¨ =β x ˙ k( e iωt +1) 2 (x x 1 )k(x x 2 )
x(t)=D[ e i(ωtφ) ]+ x 0
D(ω)= 1 3 kd ( 3 2 km ω 2 ) 2 + (βω) 2
D(ω) D(0) = 3 2 k ( 3 2 km ω 2 ) 2 + (βω) 2
m x ¨ =β x ˙ k 1 (x x 1 ) k 2 (x x 2 )+ k int (x x 2 )
m x ¨ =β x ˙ k( e iωt +1) 2 (x x 1 )(k+ k int )(x x 2 )
D(ω) D(0) = 3 2 k' (k'm ω 2 ) 2 + (βω) 2

Metrics